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Abstract

Long-short term memory networks (LSTMs) offer a promising approach for analyzing shock
propagation in multivariate economic and financial systems. To harness this potential, we in-
troduce the LSTM multiplier response function, analogous to the impulse response function of
a standard linear VAR model. This response function presents several advantages. Firstly,
it more effectively captures nonlinear dynamics inherent in complex systems compared to lin-
ear VAR models. Secondly, it accounts for the system’s current and historical states, reflecting
the intuition that negative shocks have amplified effects under adverse conditions. Thirdly, the
method involves applying shocks directly to variables of interest, obviating the need for establish-
ing causality or orthogonalizing the system. To illustrate, we compare LSTM and VAR models
by fitting them to a multivariate economic system. Leveraging the superior forecasting accuracy
of the LSTM, we demonstrate that the LSTM multiplier response function exhibits similar quali-
tative features to VAR impulse responses, highlighting its usefulness in economic and financial
applications.
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1 Introduction

Multivariate time series analysis serves as an essential methodology in economics and finance,

enabling researchers to model relationships between multiple variables that evolve simultaneously

over time. These techniques enhance our understanding of economic systems by capturing in-

terdependencies reflecting feedback mechanisms and spillover effects that univariate approaches

cannot address (Sims 1980; Stock and Watson 2001). Understanding these interdependencies has

led the development of specialized econometric methods such as, among others, vector autoregres-

sions (VAR) (Sims 1980), regime switching models (Hamilton 1989), and conditional heteroskedastic

models (Engle 1982; Bollerslev 1986). These methods and their extensions have become standard

tools in applied economics.

Outside traditional econometrics, deep learning, a subset of machine learning that relies on

neural networks with multiple layers, has been increasingly applied to the modeling of complex, non-

linear patterns in data across domains such as computer vision and sequential analysis (LeCun,

Bengio, and Hinton 2015; Goodfellow, Bengio, and Courville 2016). Deep learning models, as well

as deep learning-based artificial intelligence models, are increasingly adopted in economics, includ-

ing diverse applications in text and image analysis, causal inference, dynamic stochastic general

equilibrium models, and policy evaluation under bounded rationality (Guo et al. 2023; Korinek 2023;

Shi 2023; Fernández-Villaverde, Nuño, and Perla 2024; Dell 2025). In particular, deep learning ar-

chitectures perform well at capturing long-term dependencies and might be well-suited in time series

analysis (Lim and Zohren 2021).

One widely used deep learning model suitable for time series analysis is the Long Short-Term

Memory network (LSTM) first introduced by Hochreiter and Schmidhuber (1997). The multilayer

architecture of the LSTMs can capture well non-linear relationships in the data and its gate structure

allows it to remember relevant long-term dependencies. The gate structure is a set of three functions

that determine what new information is relevant (the input gate), what past information is no longer

useful and can be discarded (the forget gate), and what past information is still important for the

current prediction. Because LSTMs update their long-term memory as new data becomes available

they can adapt to dynamic and evolving market and economic conditions. Moreover, they are able to

handle a large number of features (explanatory variables) even if observed at different frequencies.

Unsurprisingly, they are increasingly being used in economic and financial forecasting (Fischer and

Krauss 2018; Shamsi et al. 2021; Hopp 2022; Kumarappan et al. 2024).

This paper, building on the authors’ earlier work (Chan-Lau and Quach 2023), investigates the

effectiveness of LSTMs for analyzing shock propagation in multivariate time series systems. To this

end, it introduces the concept of the LSTM multiplier, defined as the difference between the LSTM

forecasts when one variable is subjected to a shock and the one that would have occurred in the

absence of such a shock, and the concept of the LSTM multiplier response, which shows the LSTM
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multiplier values for different time horizons. The multiplier response serves as the analogue of the

impulse response function of a VAR model, over which it has two advantages. First, the multiplier

response behavior is not invariant to current and past economic or financial conditions. Second, the

shocks are applied directly to the variables in the system making unnecessary to establish causality

or orthogonalizing the system, as VARs require.

We estimate the LSTM and a standard linear VAR model for monthly and quarterly US macroe-

conomic data. The estimation pursues two goals: first, to evaluate whether the LSTM provides

superior forecasting performance; and second, to benchmark the LSTM multiplier response against

the conventional impulse response function derived from the VAR. Our results indicate that the LSTM

outperforms the VAR in forecasting accuracy at a quarterly frequency by a substantial margin. At

the monthly frequency, both models perform similarly, with the VAR holding a slight edge. The LSTM

multiplier response closely resembles that of the VAR impulse response functions for most shocks.

In the cases where they differ, we argue the differences are driven by the fact that the LSTM re-

sponses are conditional on current and past conditions. Finally, we suggest that given the superior

forecasting performance of the LSTM, its multiplier could be more accurate when evaluating how

shocks propagate in the system.

In the remainder of the paper, Section 2 reviews some of the applications of LSTMs in time

series analysis, and Section 3 describes the basic LSTM layer, which serves as the building block

of the LSTM, introduces the concept of the LSTM multiplier and explains the hyperparameter tuning

process. Section 4 discusses the empirical implementation of the model, including the dataset used

and the hyperparameter space. Results are analyzed in Section 5, including a comparison of those

corresponding to the LSTM and VAR models. Finally, Section 6 concludes.

2 A brief literature review

LSTM models have proved effective for single-variable forecasting, including univariate and multi-

variate time series models. Because they capture nonlinear patterns in the data well they often

outperform traditional models like exponential smoothing and ARIMA models. In economic applica-

tions, LSTMs have exhibited good performance in forecasting GDP growth (Hamiane et al. 2023;

Zhang, Wen, and Yang 2022; Hamiane et al. 2024; Xie et al. 2024; Zhao 2024), economic crises

(Park and Yang 2022), and consumer price inflation over medium and long-term horizons (Lakshmi

Narayanaa et al. 2023; Zhao 2024; Liu and Lan 2025; Paranhos 2025).

LSTMs also tend to perform well in financial applications (Buczynski et al. 2023). For example,

LSTMs yield better forecasts of stock prices (Serin and Kemalbay 2024; Furizal et al. 2024; Pilla and

Mekonen 2025) especially over short-term horizons (Kobiela et al. 2022). They have proved better

than univariate time series models in financial risk prediction (Xu et al. 2024), interest rate forecasting

(Salem, Jummah, and Albourawi 2024) as well as other areas (Siami-Namini, Tavakoli, and Namin
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2018). Compared to the benchmark volatility model, the Generalized Autoregressive Conditional

Heteroskedasticity (GARCH) model of Bollerslev (1986), LSTM provides better estimates of the

value-at-risk (VaR) (Ormaniec et al. 2022). In high frequency series, however, LSTMs may not do

as well as volatility models (Sezer, Gudelek, and Ozbayoglu 2020).

LSTMs have also been used in multivariate time series analysis to capture possible nonlinear

dependencies among different variables in an economic or financial system. Cao, Li, and Li (2019)

find that deep learning models of financial time series, including LSTMs, outperform VAR models,

especially during high volatility periods during which nonlinearities are likely more pronounced that

during calm periods. In economics, the results in Hopp (2022) suggest that LSTMs are better than

dynamic factor models (DFMs) for nowcasting global services exports, global merchandise export

values and volumes.

LSTM increasingly serve as one of the foundational components of hybrid forecasting models,

a rapidly growing research area (Buczynski et al. 2023). Some examples of this work include Hollis,

Viscardi, and Yi (2018), X. Zhang et al. (2019), and Ju and Liu (2021), who show that including an

attention mechanism improves the forecasting accuracy of LSTMs. Lashina and Grishunin (2023)

evaluate various popular forecasting models, including ARIMA, LSTM, VAR, support vector regres-

sion (SVR), and CatBoost, as well as an ensemble combining a DFM and an LSTM; among them,

the latter performs best in predicting GDP growth. Sivakumar (2025), using Hidden Markov Models

(HMMs), extract hidden states representing distinct economic conditions and find that including them

as additional features within a LSTM improves the accuracy of economic forecasts. In addition, cur-

rent research is exploring new LSTM architectures to enhance time series forecasting (Kong et al.

2024, Kraus et al. 2024).

Despite the potential advantages of using LSTMs in time series analysis there are some caveats

to consider. Compared with standard time series analysis the design and training of LSTMs is com-

plex and may require larger amounts of data to achieve optimal performance. Due to the complexity

of their internal architecture, it is sometimes difficult to uncover or interpret the underlying economic

relationships driving the system dynamics in a LSTM. In fact, LSTMs, as other deep learning mod-

els, are sometimes viewed as "black boxes." In response, ongoing scholarly work focuses on model

explainability to enhance the ability to elucidate and communicate the rationale behind a model’s

predictions in a manner comprehensible to humans (Y. Zhang et al. 2021; Ji et al. 2025; Molnar

2025).

3 The LSTM architecture and LSTM multiplier

Economists, market analysts, and policy makers are interested in evaluating how shocks propagate

in a multivariate time series system. The most widely used approach is to fit a VAR to the data.

Afterwards either the impulse response function (Sims 1980) or local projections (Jordà 2005) are
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used to examine the impact of shocks on the time series dynamics. This section examines shock

propagation in an LSTM multivariate system. To this end, the section introduces the concept of the

LSTM multiplier (LSTMm) (Chan-Lau and Quach 2023) and the LSTM multiplier response (LMR).

3.1 The LSTM block

An LSTM is a specialized recurrent neural network designed to model long-term dependencies in

the data (Hochreiter and Schmidhuber 1997). It has proved particularly good at processing and

predicting sequences of data, like text or time series. What makes LSTMs special is their ability

to "remember" important information for long periods while "forgetting" irrelevant details. This is

achieved through a complex internal structure with a series of functions, or gates, that control the

flow of information.

Figure 1 shows the flow of information inside the basic LSTM block architecture of Greff et al.

(2017) which serves as the building block of the LSTM multivariate system used in the analysis.1

In any period t, the information the LSTM uses is contained in three components: the input Xt, or

the new information; the long-term memory or memory cell Ct−1; and the short-term memory or

hidden state Ht−1. The latter two are information available to the block and prior to receiving the

new information. Intuitively, the state of the memory cell carries information from the distant past

through the entire sequence of observations allowing the LSTM to remember it over long periods of

time. The hidden state captures what the LSTM considers important information, conditional on the

new information and its long-term memory. The information processing by the hidden state yields

the short-term memory of the block.

The LSTM block processes the information in batches, that is, n observations at a time. Assum-

ing that there are k inputs in each observation, X ∈ Rn×k.2 It is also assumed that the short-term

and long-term memories are captured adequately with h features so H, C ∈ Rn×h. The input I,

forget F, and output O gates are defined as follows:

It (Xt, Ht−1) = σ (XtWxi + Ht−1Whi + bi) , (1)

Ft (Xt, Ht−1) = σ (XtWxf + Ht−1Whf + bf ) , (2)

Ot (Xt, Ht−1) = σ (XtWxo + Ht−1Who + bo) , (3)

where Wxi, Wxf , Wxo ∈ Rk×h and Whi, Whf , Who ∈ Rh×h are the weight parameters, bi, bf , bo ∈
R1×h are bias parameters, and σ is the sigmoid function.

1. The description of the LSTM block follows that of A. Zhang et al. (2023).
2. In the description of the LSTM block, the input Xt is defined as a n × k matrix, where n represents the number of

observations in the batch. The matrix formulation illustrates how the LSTM block processes the information in practice,
as the training of the multi-step LSTM, as is the case with deep learning networks, typically handle multiple sequences
simultaneously for computational efficiency (Goodfellow, Bengio, and Courville 2016).
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Figure 1: Information flow in an LSTM block.

Source: A. Zhang et al. (2023)

Updating the memory cell requires computing first an input node, C̃t ∈ Rn×h using the equation

below:

C̃t (Xt, Ht−1) = σ (XtWxc + Ht−1Whc + bc) , (4)

where Wxc ∈ Rk×h and Whc ∈ Rh×h are the weight parameters, and bc ∈ R1×h are the bias

parameters for the input node. Once the input node is computed, the memory cell and the hidden

states are updated:

Ct = Ft ⊙Ct−1 + It ⊙ C̃t, (5)

Ht = Ot ⊙ tanh(Ct). (6)

The gated architecture of the LSTM fundamentally alters how past information is processed

compared to a linear VAR model. In the VAR framework, fixed coefficients impose static weights on

lagged observations, meaning the influence of past data remains constant over time. By contrast,

the LSTM dynamically modulates the relevance of historical information through its input and forget

gates. While the model’s weight and bias parameters remain fixed after training, the sigmoid and

tanh activation functions enable context-dependent gating: the input gate selectively incorporates

new information, while the forget gate discards obsolete patterns. This adaptive mechanism allows

the LSTM to emphasize or suppress past states based on the current input sequence, creating

time-varying dependencies that VAR’s rigid linear structure cannot capture.
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3.2 The multi-step LSTM

Assume that the number of lags to include in the model is P , and that the goal is to predict the

observation Xt using the past information contained in Xt−i, i = 1, . . . , P . The construction of

the multi-step LSTM requires chaining P LSTM blocks sequentially. The first block processes the

input Xt−P , as this is the earliest observation available, with default values for the the memory cell

Ct−P −1 and the hidden state Ht−P −1 set to a default value, typically zero vectors 0 ∈ Rn×h. After

the period t−P −1 information is processed, the LSTM block yields the updated memory cell Ct−P

and hidden state Ht−P , which then are fed into the second LSTM block, which process them using

as input Xt−P +1. Each successive LSTM block updates the memory cell and hidden state using the

next input observation until the last LSTM block is reached. Afterwards, the hidden state serves as

input into a linear prediction layer to yield the predicted value X̂t:

X̂t = WoutHt−1 + bout, (7)

where Wout are the weight parameters and bout the bias parameters (Figure 2).

Figure 2: Pseudocode: multi-step LSTM with P lags

1: Input: Sequence of P input vectors Xt−P , Xt−P +1, . . . , Xt−1.
2: Output: Forecast X̂t of target Xt.
3: Parameters:
4: P : number of LSTM blocks (look-back period).
5: Wxi, Wxf , Wxo, Wxc, Wout: weight parameters matrices.
6: bi, bf , bo, bc, bout: bias parameters vectors.
7: Initialize Ct−P −1 ← 0 ▷ Initial cell state (long-term memory)
8: Initialize Ht−P −1 ← 0 ▷ Initial hidden state (short-term memory)
9: for j = P downto 1 do ▷ Process LSTM blocks sequentially

10: Input← Xt−j ▷ Current input at time t− j
11: PrevCellState← Ct−j−1 ▷ Previous cell state
12: PrevHiddenState← Ht−j−1 ▷ Previous hidden state
13: It−j ← I (Input, PrevHiddenState) ▷ Decide what input to retain, eq. (1)
14: Ft−j ← F (Input, PrevHiddenState) ▷ Decide what to forget, eq. (2)
15: Ot−j ← O (Input, PrevHiddenState) ▷ Decide what to output, eq. (3)
16: C̃t−j ← C̃t−j (Input, PrevHiddenState) ▷ Compute the input node, eq. (4)
17: Ct−j ← Ft−j ⊙ PrevCellState + It−j ⊙ C̃t−j ▷ Update the memory cell, eq. (5)
18: Ht−j ← Ot−j ⊙ tanh(Ct−j) ▷ Update the hidden state, eq. (6)
19: end for
20: X̂t ←Wout ·Ht−1 + bout ▷ Produce prediction via prediction layer, eq. (7)
21: Return X̂t

Sources: the authors.
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3.3 The LSTM multiplier response (LMR)

Once the multi-step LSTM has been properly trained, it can be represented concisely by the function

fLSTM, which takes as input the P lags of the xt ∈ R1×k to predict its value, x̂t:

x̂t = f
(
x[t−P :t−1]

)
, (8)

where x[t−P :t−1] ∈ RP ×k is defined as:

x[t−P :t−1] =



xt−P

xt−P +1
...

xt−2

xt−1


=



x1
t−P x2

t−P · · · xk
t−P

x1
t−P +1 x2

t−p+1 · · · xk
t−p+1

...
... · · ·

...

x1
t−2 x2

t−2 · · · xk
t−2

x1
t−1 x2

t−1 · · · xk
t−1


.

Starting at period t, equation (8) serves to generate the N -step ahead forecasts recursively. As-

suming N > P , the recursive forecasts are computed in a closed loop, using the LSTM’s own

predictions:

x̂t+1 = f
(
[xt−P , . . . ; xt]T

)
,

x̂t+2 = f
(
[xt−P +1, . . . ; x̂t+1]T

)
,

...
...

x̂t+N = f
(
[x̂t−P +N , . . . ; x̂t−2+N , x̂t−1+N ]T

)
. (9)

Notice that in each step, the LSTM model will generate not only the next period forecast of the

system variables, xt+j , j = 1, . . . , N , but also update the value of the memory cell and the hidden

state. Since these updated values are not necessarily consistent across successive forecasts, the

recursive forecasts always reset the memory cell and the hidden state in the t+ j−P, j = 1, . . . , N

periods to the zero vector.

The set of equations (9) serve as the basis for defining the LSTM multiplier. First, following the

line of reasoning pursued when defining the impulse response functions in VAR systems, set the

expected value of the system variables equal to their LSTM forecast:

E[x̂t+s] = f(z[t+s−P :t+s−1]), (10)

where

z[t+s−p:t+s−1] =

 x̂[t+s−P :t+s−1], if s > P

[x[t+s−P :t]; x̂[t+1:t+s−1]]T , otherwise,
(11)
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and let dt ∈ R1×k be a vector representing the shock applied to the system in period t. In the

case of an additive shock, the shocked values of the system variables in period t are given by

xd
t = xt + dt; and in the case of a multiplicative shock, xd

t = xt ⊙ dt. Applying (9) generates the

forecasts xd
t+j , j = 1, . . . , N under the shock conditions, and equations (10) and (11) serve to find

the conditional expected value E[xd
t+j ] once xd

t is replaced for xt.

Given the shock dt, the LSTM multiplier s periods ahead, LSTMm (xt | dt) is defined as:

LSTMm (t + s | dt) = E[x̂d
t+s]− E[x̂t+s], (12)

and by letting s taking values in [1, N ], where N is the last period desired in the analysis, we gen-

erate the LSTM equivalent of a VAR impulse response analysis, or the LSTM multiplier response

(LMR). Note that the LMR response reflects the LSTM internal representation of the variables inter-

dependencies.

Contrary to the impulse response in the standard linear VAR, which depends only on its coeffi-

cients that are constant over time, the LMR depends on the past history of the system over the last

P periods, including the current one when the shock occurs, i.e. x[t−P :t]. This dependence on his-

torical context enables the LSTM to recognize that, given the same shock, the impact on the system

may differ depending on the prevailing economic regime or recent trajectory—such as whether the

economy is in a recession or expansion. As a result, the shape of the LMR reflects these regime-

dependent variations, capturing the notion that a negative shock might be more damaging during a

recession than in a period of growth.

Another significant advantage of the LMR over the VAR-based impulse response is that no

structural assumptions about the variable ordering, e.g. causal relationships or error term corre-

lation, are needed. In the computation of the LMR the shock is applied directly to the variable of

interest rather than to the error term, as is the case in the VAR. Hence, as opposite to a structural

VAR, it is unnecessary to orthogonalize the shocks in the LSTM. The absence of structural identifi-

cation combined with dynamics conditional on the lagged and current values of the system variables

suggest that the LMR is similar to performing scenario analysis. The advantage is gained, however,

at the expense of ignoring economic causality.

3.4 LSTM training: hyperparameters and parameter selection method

As other deep learning models and machine learning models more generally the behavior and per-

formance of LSTMs is determined partly by hyperparameters, whose values are configured before

the model is trained on the data. Unlike model parameters such as the weights and biases, the

hyperparameter values are not learned by the model itself. Some of these hyperparameters include

the number of lags (time steps), the dimension of the hidden state (number of neurons), the number

of layers in the LSTM, and the dropout rate. This last hyperparameter forces the LSTM to ignore
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the information provided by a subset of the neurons in the hidden states, which helps to prevent the

model to overfit the data. Other important hyperparameters are the number of epochs, or number

of training iterations over the data sample, which if inadequate, could cause the model to underfit or

overfit the data; and the learning rate, which if too high or too low, might not allow the algorithm to

optimize the weight and bias parameters.

Selecting the best possible hyperparameter values is known as hyperparameter tuning. The

tuning process aims to find the combination of hyperparameters values that performs the best ac-

cording to some metric, such as minimizing a target loss function based on the model’s one-step

ahead predictions. The loss evaluation is based on a five-fold time series cross validation to allow for

the presence of serial correlation in the time series data. The cross-validation requires the dataset to

be divided first into a training dataset and a testing dataset. The training dataset is partitioned again

into five sequential folds. In the first cross-validation round, the first fold is used as the initial training

set and the second as the validation set; in the second round, the first two folds are combined to form

the training set and the third fold is used as the validation set; and so on. During the cross-validation

exercise, it is assumed that the blocks of P observations are i.i.d. and that predictions one-step

ahead depend only on the P data block.

The loss function is set equal to the mean squared error (MSE), the average squared deviation

between the LSTM model’s one-step ahead predictions and the observed values in the validation

set. The hyperparameter tuning is performed using Bayesian Optimization (BO) (Snoek, Larochelle,

and Adams 2012). Unlike grid search or random search, which explore the hyperparameter space

in a less informed manner, BO leverages a probabilistic model to guide its search. The core idea

is to build a "surrogate model" that approximates the true loss function based on past evaluations

of different hyperparameter combinations. This surrogate model provides both a prediction of the

loss function’s value and an estimate of the uncertainty around that prediction. An "acquisition func-

tion" then uses this information to determine the next set of hyperparameters to evaluate, balancing

exploration (trying new, uncertain regions of the hyperparameter space) and exploitation (focusing

on areas predicted to yield high performance). By selecting promising hyperparameter combina-

tions, BO is able to find the optimal settings with significantly fewer evaluations compared to other

methods.

4 LSTM empirical implementation

4.1 Data

Two different datasets, both comprising U.S. variables, serve to estimate the LSTM and VAR mod-

els. The selection of variables is guided by Sims (1980), for the first dataset, and Sims (1992),

for the second dataset, which are two seminal papers that established the VAR methodology as a

cornerstone of macroeconomic analysis. The final choice of variables differ slightly from those in
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the references due to data availability issues. The two datasets differ in the sampling frequency

since other studies, some reviewed in Section 2, have found that for some datasets LSTMs might

not necessarily perform better than other time series models across all sampling frequencies. All

the data are sourced from Haver Analytics.

The first dataset is sampled at a quarterly frequency and covers the period 1985Q1 - 2024 Q4.

The variables included are the U.S. money supply, as measured by M2, the unemployment rate (U ),

the wage rate (W ), and the import price index (IMP ), the gross domestic product (RGDP ), and

the personal consumption expenditure price index (PCE). The second dataset, sampled monthly,

includes the effective fed funds rate (FF ), money supply (M2), the personal consumption expen-

diture price index (PCE), industrial production (IP ), the dollar index (DXY ), and the CRB Spot

Commodity Price Index, Raw Industrials (PZRAW ). The sample period is January 1985 - January

2025. In both datasets the variables are transformed to year-on-year growth rates except for the

federal funds rate (FF ), which is included in levels. All series are subsequently normalized using

Z-scores to ensure comparability across variables with different scales.

4.2 Bayesian optimization of the LSTM: search space and hyperparameter tuning

The range of hyperparameter values the BO uses to minimize the MSE of the LSTM one-step ahead

predictions are:

• Hidden size, H , (number of neurons in LSTM): H ∈ [12, 600], H ∈ Z.

• Number of LSTM layers, N : N ∈ [1, 7], N ∈ Z.

• Dropout rate between LSTM layers, d: d ∈ [0, 0.7], d ∈ R.

• Learning rate, η: η ∈ [0.001, 0.1], η ∈ R.

• Number of epochs, E: E ∈ [300, 1000], E ∈ Z.

The values of two other hyperparameters are set outside the BO procedure. The first hyperparam-

eter is the sequence length, P , which is also the number of lags in the LSTM was determined by

fitting a VAR to the data and selecting the lag order that minimized the Akaike Information Criterion

(AIC). The values are set equal to 8 quarters for the first dataset and 14 months for the second

dataset. The second hyperparameter is the batch size, or the number of examples used during the

training process of the model.3. Due to computational limitation, we set the batch size to 64.

The partitioning of the data into a training subsample, used for training and validation, and the

testing subsample, which serves to evaluate the out-of-sample performance of the model, reduces

potential information leakage between the two subsamples. The hyperparameter tuning is performed

3. Please refer to the discussion in the LSTM block section, Section 3.1 For further details, see Goodfellow, Bengio,
and Courville (2016))
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using data points observed until December 2015. Observations beyond this date are used to test

the out-of-sample performance of the LSTM against the VAR model recursively based on one-step

ahead predictions in the pre-Covid and COVID-19 and post-Covid samples, as well as for the full

sample period.

5 Results

5.1 Hyperparameter tuning

Figure 3 presents the BO workflow for hyperparameter tuning of the LSTM models fitted to the quar-

terly and monthly datasets. The process began with 50 random evaluations to initialize the Gaus-

sian Process surrogate model, followed by 50 optimization rounds guided by expected improvement

(Snoek, Larochelle, and Adams 2012). As shown, the algorithm rapidly identified high-performance

regions after the exploratory phase, with subsequent evaluations concentrating near optimal config-

urations. Table 1 shows the final set of hyperparameter values.

Table 1: LSTM models, hyperparameter values

Hyperparameter Quarterly model Monthly model

Sequence length, L 8 14
Number of layers, N 1 1
Hidden cell size, H 84 57
Training epochs, E 800 300
Learning rate, η 0.0032 0.0354

Notes: sequence length determined outside BO workflow and based on
AIC in reduced VAR models; dropout rate is irrelevant in one layer
LSTMs. Sources: the authors.
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Figure 3: Bayesian optimization, mean squared error (MSE)

(a) Quarterly LSTM model

(b) Monthly LSTM model

Sources: the authors.
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5.2 Out-of-sample performance vis-à-vis reduced VAR models

Once the optimal hyperparameter values are determined using BO, one-step ahead predictions are

used to evaluate the out-of-sample performance of the quarterly and monthly LSTM models, and

compared them with those of standard reduced form VARs fitted to the same datasets. The results

are summarised in Table 2, which shows the root mean squared errors (RMSE) of the four models

over three different out-of-sample periods. The first one is the pre-COVID period from 2015 until

2019; the second period is the COVID and post-COVID period, from 2020 until 2025; and the third

one is the full sample period from 2015 until 2024 (quarterly data) or 2025 (monthly data). Figures

4 and 5 illustrate these results.

There are significant differences in the forecasting performance of the LSTMs and the VAR

models across different time periods and sampling frequencies. At the quarterly frequency, the

LSTM consistently outperformed the VAR during the pre-COVID period, with the VAR’s RMSE val-

ues ranging from 50 to 150 percent higher than the LSTM’s RMSEs for almost all variables. The

exception is the wage rate, W , for which the VAR performs better. Crucially, during the highly volatile

COVID and post-COVID period (2020–24), the LSTM’s advantage increases dramatically—its ability

to capture nonlinear patterns proves far superior to the VAR’s linear formulation, a finding in line with

those of Cao, Li, and Li (2019). For example, in the case of the unemployment rate, U , the VAR’s

RMSE is 2.5 times higher than the LSTM’s RMSE. This suggests that LSTMs could excel during

periods in which structural shocks induce regime changes as the LSTM gate structure might be able

to capture the changes.

Based on the quarterly models’ results, it is expected that the monthly LSTM would outperform

the corresponding VAR, but this is not the case. At the monthly frequency, the LSTM and VAR

models exhibit similar predictive performance with comparably low RMSE values. The monthly

LSTM, however, consistently underperforms the VAR across all variables and time periods but only

by a small margin (Figure 5 and Table 2). Arguably, at higher frequencies, non-linear dependencies

can be well approximated by linear approximations, which are more robust to the presence of noise.

Further refinements to the LSTM architecture—such as increasing the number of input time-steps

or incorporating additional consolidation layers— might potentially enhance forecasting accuracy by

minimizing the noise effects. Consistent patterns are observed when using lesser outlier-sensitive

metrics such as the Mean Absolute Error (MAE), as reported in Table 3.

We would like to note that these results are consistent with findings from other studies, which

show that LSTMs sometimes outperform other time series models, but sometimes do not (Makri-

dakis, Spiliotis, and Assimakopoulos 2018). This underscores the importance of trying different

models and model specifications (Hewamalage, Bergmeir, and Bandara 2021).

15



Table 2: LSTMs and VARs: Out-of-sample forecast performance, RMSE

(a) Quarterly models

Variable LSTM VAR

Pre-COVID IMP 0.345 0.460
2015–19 M2 0.150 0.224

PCE 0.224 0.316
RGDP 0.214 0.338
U 0.092 0.155
W 0.224 0.201

COVID and IMP 0.840 4.140
post-COVID M2 1.290 2.210
2020–24 PCE 0.576 2.960

RGDP 1.840 2.710
U 2.140 5.370
W 0.581 1.130

Full test IMP 0.667 3.100
sample M2 0.968 1.650
2015–24 PCE 0.455 2.210

RGDP 1.380 2.030
U 1.590 4.010
W 0.458 0.856

(b) Monthly models

Variable LSTM VAR

Pre-COVID DXY 0.288 0.229
2015–19 FF 0.093 0.035

IP 0.218 0.182
M2 0.102 0.093
PCE 0.133 0.138
PZRAW 0.225 0.166

COVID and DXY 0.405 0.453
post-COVID FF 0.143 0.083
2020–25 IP 0.778 0.797

M2 0.537 0.357
PCE 0.318 0.257
PZRAW 0.410 0.263

Full test DXY 0.358 0.371
sample FF 0.123 0.067
2015–25 IP 0.600 0.608

M2 0.407 0.274
PCE 0.254 0.213
PZRAW 0.341 0.225

Notes: All models estimated using pre-2015 data; out-of-sample performance based on one-step ahead forecasts.
Reported results are based on rescaled targets, where all dependent variables were normalised using Z-scores prior to
model estimation to improve comparability across series and metrics. Notation: IMP , U.S. import price index; M2, U.S.
money supply; P CE, U.S. personal consumption expenditure index; RGDP , U.S. real GDP; U , U.S. unemployment
rate; W , U.S. wage rate; DXY , U.S. dollar index; F F , U.S. federal funds rate; IP , U.S. industrial production index;
P ZRAW , CRB spot commodity price index, raw industrials. Sources: the authors.
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Table 3: LSTMs and VARs: Out-of-sample forecast performance, MAE

(a) Quarterly models

Variable LSTM VAR

Pre-COVID IMP 0.287 0.384
2015–19 M2 0.123 0.185

PCE 0.177 0.276
RGDP 0.170 0.284
U 0.081 0.115
W 0.165 0.165

COVID and IMP 0.626 2.400
post-COVID M2 0.882 1.400
2020–24 PCE 0.427 1.870

RGDP 1.150 1.830
U 0.978 3.290
W 0.467 0.682

Full test IMP 0.475 1.500
sample M2 0.544 0.858
2015–24 PCE 0.316 1.160

RGDP 0.715 1.140
U 0.579 1.880
W 0.333 0.452

(b) Monthly models

Variable LSTM VAR

Pre-COVID DXY 0.223 0.180
2015–19 FF 0.069 0.028

IP 0.172 0.137
M2 0.086 0.074
PCE 0.102 0.098
PZRAW 0.177 0.129

COVID and DXY 0.312 0.317
post-COVID FF 0.108 0.056
2020–25 IP 0.451 0.479

M2 0.314 0.226
PCE 0.247 0.202
PZRAW 0.328 0.207

Full test DXY 0.273 0.257
sample FF 0.091 0.044
2015–25 IP 0.328 0.329

M2 0.214 0.159
PCE 0.183 0.156
PZRAW 0.261 0.173

Notes: All models estimated using pre-2015 data; out-of-sample performance based on one-step ahead forecasts.
Notation: IMP , U.S. import price index; M2, U.S. money supply; P CE, U.S. personal consumption expenditure index;
RGDP , U.S. real GDP; U , U.S. unemployment rate; W , U.S. wage rate; DXY , U.S. dollar index; F F , U.S. federal
funds rate; IP , U.S. industrial production index; P ZRAW , CRB spot commodity price index, raw industrials. Sources:
the authors.
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Figure 4: Out-of-sample forecasts: quarterly LSTM and VAR models

Notes: All models estimated using pre-2015 data; out-of-sample performance based on one-step ahead forecasts.
Notation: IMP , U.S. import price index; M2, U.S. money supply; P CE, U.S. personal consumption expenditure index;
RGDP , U.S. real GDP; U , U.S. unemployment rate; W , U.S. wage rate. Sources: the authors.
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Figure 5: Out-of-sample forecasts: monthly LSTM and VAR models

Notes: All models estimated using pre-2015 data; out-of-sample performance based on one-step ahead forecasts.
Notation: DXY , U.S. dollar index; F F , U.S. federal funds rate; IP , U.S. industrial production index; M2, U.S. money
supply; P CE, U.S. personal consumption expenditure index; P ZRAW , CRB spot commodity price index, raw
industrials. Sources: Haver Analytics and the authors.

19



5.3 LSTM multiplier response

To examine the LMR for a single variable, xi, we apply an additive shock di
t = [0, . . . , σi, . . . , 0],

where σi is the standard deviation of xi. Afterwards, we compute the multipliers recursively using

equation 12 over a 12-period horizon (12 quarters and 12 months for the quarterly and monthly

models respectively). For any given horizon, the values of the multipliers depend on the current and

lagged values of the variables at the time of the shock. We illustrate this situation by analyzing the

specific case of real GDP shocks in the quarterly model. Figure 6 plots the values of the GDP LSTM

multiplier 12 quarters, calculated using historical data and the prevailing values of GDP and the other

variables at the time of the shock. Compared with a standard VAR, the variation displayed by the

multipliers indicates that the shock transmission mechanism is highly dependent on the initial con-

ditions. Hence, VAR-based policy guidance could underestimate or overestimate policy responses.

This is also the case for other variables’ multipliers, as the figures in the Appendix show.

Accordingly, the shape of the LRM will also depend on the prevailing state of the system at

the time the shock occurs. Instead of analyzing each individual response across the entire data

sample we focus on the median response and its interquartile range to capture the typical behavior

and variability of the response. We examine the GDP LMR in the quarterly model, shown in Figure

7. From the median LMRs, the impact of the GDP shock on the real economy fades by the end of

the sixth quarter. Several LMRs align with economic intuition: import prices (IMP ) rise as higher

GDP drives import demand; higher income leads to increased personal consumption expenditure

(PCE); economic activity accelerates, with growth momentum gradually declining (RGDP ); and

businesses respond to increased demand for goods and services by hiring more workers, lowering

the unemployment rate (U ).

The patterns observed in two median LMRs are seemingly counterintuitive. The first concerns

the M2 LMR, which indicates a decline in the money supply following a GDP shock. This stands in

stark contrast to a VAR impulse response, which typically shows an increase in M2 under similar

circumstances. At least two potential explanations exist for this unexpected response pattern. First,

a positive GDP shock often signals economic expansion, leading to increased aggregate demand

and potential inflationary pressures. In response, central banks may implement tighter monetary

policies to prevent economic overheating. Second, economic agents might anticipate inflation fol-

lowing a positive GDP shock, leading them to hoard money and reduce its velocity. To counteract

this behavior and maintain nominal GDP stability, a central bank could opt to reduce the money

supply.
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Figure 6: LSTM multiplier: real GDP shock (RGDP ), 12 quarters ahead, quarterly model

Notes: The figure shows the impact of a 1 standard deviation shock to real GDP on other variables 12 quarters ahead,
as measured by the corresponding LSTM multiplier (equation 12). Both axes show the Z-score values of the variables.
Notation: IMP , U.S. import price index; M2, U.S. money supply; P CE, U.S. personal consumption expenditure index;
RGDP , U.S. real GDP; U , U.S. unemployment rate; W , U.S. wage rate. Source: Haver Analytics and the authors.
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Figure 7: LSTM response (LMR): 1-standard deviation shock to real GDP (RGDP )

Note: Response values measured as Z-scores. Notation:IMP , U.S. import price index; M2, U.S. money supply; P CE,
U.S. personal consumption expenditure index; RGDP , U.S. real GDP; U , U.S. unemployment rate; W , U.S. wage rate.
Sources: Haver Analytics and the authors.
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The second observation concerns the wage dynamics in the LMR. Contrary to common in-

tuition and the VAR predictions, which indicate that wages increase following a GDP shock, the

LMR reveals a different pattern: wages initially decline before subsequently rising. This unexpected

behaviour may be attributed to an increase in labour supply, as heightened economic activity encour-

ages more individuals to enter the workforce, potentially causing a temporary downward pressure on

wages. Simultaneously, the expected decline in the money supply, as discussed earlier, could con-

strain firms’ capacity to raise wages. Over time, as the economy adjusts and both labour demand

and money supply catch up with the expanded workforce, wages begin to trend upward. These

nuanced patterns captured by the LMR for both money supply and wage dynamics offer a more

complex view of economic responses to shocks than traditional models. We hypothesise that these

scenarios, observed in the historical sample, may occur more frequently than previously thought,

underscoring the complexity of monetary and labour market dynamics and the potential limitations

of traditional economic models in capturing such responses.4

6 Conclusions

Through a detailed examination of the LSTM architecture, encompassing the LSTM block and multi-

step framework, this study establishes a robust process for implementing multivariate time series

LSTMs and analyzing shock propagation. Key to this process is rigorous hyperparameter tuning

via Bayesian optimization, ensuring optimal model performance. Empirical results derived from

U.S. macroeconomic data indicate that quarterly LSTMs can exhibit superior forecasting accuracy

compared to VAR models, particularly during periods of heightened volatility like the COVID-19

pandemic.

This paper also introduces the LSTM multiplier response function as a novel approach to an-

alyzing shock propagation within multivariate economic systems. The analysis demonstrates that

LSTM networks offer key advantages over traditional linear VAR models, notably in their capacity

to capture nonlinear dynamics while accounting for the state of the system at the time of the shock

realization. The methodology involves applying shocks directly to variables of interest, removing the

need for establishing causality or orthogonalizing the system as required by VAR approaches.

The LSTM multiplier response function, designed to parallel VAR impulse responses, displays

similar qualitative characteristics and could potentially capture the shock propagation dynamics with

greater precision due to LSTM’s enhanced forecasting capabilities. Our analysis, however, sug-

gests that the LSTM advantage erodes with higher frequency data, as linear models may handle

noise more effectively. These findings underscore the potential of LSTM networks as a tool for un-

derstanding economic shock transmission, while also highlighting their limitations. Future research

4. The appendix presents additional figures illustrating the LSTMm and LMR for the variables in the quarterly model
since it outperforms its VAR counterpart. Results for the monthly model are available upon request.
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may benefit from exploring hybrid models or frequency-specific LSTM architectures, as suggested

by Sezer et al. (2020).
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Appendix - additional figures

Figure A.1: LSTM multiplier: import price shock (IMP ), 12 quarters ahead, quarterly model

Notes: The figure shows the impact of a 1 standard deviation shock to import prices on other variables 12 quarters
ahead, as measured by the corresponding LSTM multiplier (equation 12). Both axes show the Z-score values of the
variables. Notation: IMP , U.S. import price index; M2, U.S. money supply; P CE, U.S. personal consumption
expenditure index; RGDP , U.S. real GDP; U , U.S. unemployment rate; W , U.S. wage rate. Sources: Haver Analytics
and the authors.
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Figure A.2: LSTM multiplier: money supply shock (M2), 12 quarters ahead, quarterly model

Notes: The figure shows the impact of a 1 standard deviation shock to the money supply on other variables 12 quarters
ahead, as measured by the corresponding LSTM multiplier (equation 12). Both axes show the Z-score values of the
variables. Notation: IMP , U.S. import price index; M2, U.S. money supply; P CE, U.S. personal consumption
expenditure index; RGDP , U.S. real GDP; U , U.S. unemployment rate; W , U.S. wage rate. Sources: Haver Analytics
and the authors.
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Figure A.3: LSTM multiplier: personal consumption expenditures shock (PCE), 12 quarters ahead,
quarterly model

Notes: The figure shows the impact of a 1 standard deviation shock to personal consumption expenditures on other
variables 12 quarters ahead, as measured by the corresponding LSTM multiplier (equation 12). Both axes show the
Z-score values of the variables. Notation: IMP , U.S. import price index; M2, U.S. money supply; P CE, U.S. personal
consumption expenditure index; RGDP , U.S. real GDP; U , U.S. unemployment rate; W , U.S. wage rate. Sources:
Haver Analytics and the authors.
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Figure A.4: LSTM multiplier: unemployment shock (U ), 12 quarters ahead, quarterly model

Notes: The figure shows the impact of a 1 standard deviation shock to unemployment on other variables 12 quarters
ahead, as measured by the corresponding LSTM multiplier (equation 12). Both axes show the Z-score values of the
variables. Notation: IMP , U.S. import price index; M2, U.S. money supply; P CE, U.S. personal consumption
expenditure index; RGDP , U.S. real GDP; U , U.S. unemployment rate; W , U.S. wage rate. Sources: Haver Analytics
and the authors.
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Figure A.5: LSTM multiplier: wage shock (W ), 12 quarters ahead, quarterly model

Notes: The figure shows the impact of a 1 standard deviation shock to wages on other variables 12 quarters ahead, as
measured by the corresponding LSTM multiplier (equation 12). Both axes show the Z-score values of the variables.
Notation: IMP , U.S. import price index; M2, U.S. money supply; P CE, U.S. personal consumption expenditure index;
RGDP , U.S. real GDP; U , U.S. unemployment rate; W , U.S. wage rate. Source: Haver Analytics and the authors.
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Figure A.6: LSTM response (LMR): 1-standard deviation shock to import prices (IMP )

Note: Response values measured as Z-scores. Notation:IMP , U.S. import price index; M2, U.S. money supply; P CE,
U.S. personal consumption expenditure index; RGDP , U.S. real GDP; U , U.S. unemployment rate; W , U.S. wage rate.
Sources: Haver Analytics and the authors.
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Figure A.7: LSTM response (LMR): 1-standard deviation shock to money supply (M2)

Note: Response values measured as Z-scores. Notation:IMP , U.S. import price index; M2, U.S. money supply; P CE,
U.S. personal consumption expenditure index; RGDP , U.S. real GDP; U , U.S. unemployment rate; W , U.S. wage rate.
Sources: Haver Analytics and the authors.
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Figure A.8: LSTM response (LMR): 1-standard deviation shock to personal consumption expendi-
tures (PCE)

Note: Response values measured as Z-scores. Notation:IMP , U.S. import price index; M2, U.S. money supply; P CE,
U.S. personal consumption expenditure index; RGDP , U.S. real GDP; U , U.S. unemployment rate; W , U.S. wage rate.
Sources: Haver Analytics and the authors.
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Figure A.9: LSTM response (LMR): 1-standard deviation shock to unemployment (U )

Note: Response values measured as Z-scores. Notation:IMP , U.S. import price index; M2, U.S. money supply; P CE,
U.S. personal consumption expenditure index; RGDP , U.S. real GDP; U , U.S. unemployment rate; W , U.S. wage rate.
Sources: Haver Analytics and the authors.
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Figure A.10: LSTM response (LMR): 1-standard deviation shock to wages (W )

Note: Response values measured as Z-scores. Notation:IMP , U.S. import price index; M2, U.S. money supply; P CE,
U.S. personal consumption expenditure index; RGDP , U.S. real GDP; U , U.S. unemployment rate; W , U.S. wage rate.
Sources: Haver Analytics and the authors.
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Zhang, Yu, Peter Tiňo, Aleš Leonardis, and Ke Tang. 2021. “A Survey on Neural Network Inter-

pretability.” IEEE Transactions on Emerging Topics in Computational Intelligence 5 (5): 726–

742. https://doi.org/10.1109/TETCI.2021.3100641. arXiv: 2012.14261.

Zhao, Jiayao. 2024. “The Macroeconomic Prediction Model based on LSTM Improved Algorithm.” In

2024 International Conference on Integrated Circuits and Communication Systems (ICICACS),

1–7. https://doi.org/10.1109/ICICACS60521.2024.10498821.

39

https://dl.acm.org/doi/10.5555/2999325.2999464
https://doi.org/10.1257/jep.15.4.101
https://arxiv.org/abs/2409.02551
https://arxiv.org/abs/2405.20603
Https://D2L.ai
https://doi.org/10.1371/journal.pone.0269529
https://doi.org/10.1088/1757-899X/569/5/05237
https://doi.org/10.1109/TETCI.2021.3100641
https://arxiv.org/abs/2012.14261
https://doi.org/10.1109/ICICACS60521.2024.10498821


 
 

 

 

 

[This page is intentionally left blank] 
 



 
 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Address: 10 Shenton Way, #15-08 
MAS Building, Singapore 079117 

Website: www.amro-asia.org 
Tel: +65 6323 9844 

Email: enquiry@amro-asia.org 
LinkedIn | Twitter | Facebook | YouTube 

 

 
 


	WP_LSTM_Cover_Revised.pdf
	LSTMm_revised_ugly_font.pdf
	Introduction
	A brief literature review
	The LSTM architecture and LSTM multiplier
	The LSTM block
	The multi-step LSTM
	The LSTM multiplier response (LMR)
	LSTM training: hyperparameters and parameter selection method

	LSTM empirical implementation
	Data
	Bayesian optimization of the LSTM: search space and hyperparameter tuning

	Results
	Hyperparameter tuning
	Out-of-sample performance vis-à-vis reduced VAR models
	LSTM multiplier response

	Conclusions


