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Abstract 

Forecasting the U.S. federal funds rate is important since it impacts global financial  
conditions, and in turn the real economy. This study examines whether AI models could 
forecast policy rates accurately by inferring the implicit decision rules the U.S. Federal 
Open Markets Committee (FOMC) follows when setting the policy rate. We examine two 
recurrent neural networks (RNNs), LSTM and GRU, and a large zero-shot language model 
(LLM) capable of combining numerical economic data and interpreting qualitative 
information. The forecasting performance of the three models is good, especially during 
the zero lower bound and early COVID 19 periods. The policy rules implied from the RNN 
models suggest that the FOMC might have been overly accommodative during the COVID-
19 pandemic. Since 2020, the models suggest a deviation from prior monetary policy 
patterns, with the FOMC adjusting rates less frequently than predicted by the model-
implied policy rules. These findings suggest that incorporating AI insights could enhance 
our understanding of and ability to predict future Fed rate decisions. 
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1 Introduction

Given the central role of the U.S. dollar in international finance and global trade, understanding

and predicting changes in the Fed’s policy rate is crucial as its impact on global financial conditions

affect exchange rates, investment decisions, and borrowing costs in other countries—particularly

in emerging markets—through interest rate differentials, risk sentiment, and portfolio rebalancing

channels.

The forecasting task is inherently difficult since it involves inferring the implicit decision rules the U.S.

Federal Open Markets Committee (FOMC) follows when setting the policy rate. The rules are not

necessarily fixed and could change over time due to changes in the Committee’s composition, evolv-

ing quantitative and qualitative policy frameworks, and the overall discretionary nature of monetary

policy. In addition, rate decisions are influenced by a wide range of factors, including real-time eco-

nomic data, financial market conditions, geopolitical developments, and communication strategies

such as forward guidance, all of which add complexity and uncertainty to the forecasting task.

This paper argues that artificial intelligence (AI) models may better capture the implicit rate decision

rules the FOMC follows. Specifically, it examines the forecasting performance of three AI-based

models. The first two models are modern recurrent neural networks (RNNs) developed for modeling

long sequences of observations. The first RNN is a long short-term memory (LSTM) model—a type

of RNN with a gating mechanism that allows information to be filtered and passed from one time

step to the next. This structure makes LSTMs well-suited for time series forecasting when the model

inputs are numerical data. The second RNN is a gated recurrent unit (GRU) network, another RNN

which was developed to reduce the computational time required to estimate the network parameters.

It shared the same principles as the LSTM, but it has a simpler gate structure, which enables faster

training (estimation) times.

The LSTM and GRU networks only process numerical inputs and cannot incorporate qualitative

factors that may also influence FOMC decisions. To address this, we also explore the performance

of a third model, a zero-shot application of a state-of-the-art large language model (LLM), Anthropic’s

Claude 3.5 Sonnet.1 The LLM is capable of processing and interpreting contextual and qualitative

information—such as economic narratives, forward guidance, and geopolitical developments. We

input into the LLM the same quantitative information input into the RNNs together with a textual

prompt asking the model to review the data in its capacity as a central bank advisor.

The results show that the LSTM, GRU, and zero-shot LLM models perform well in forecasting the

federal funds rate, with the LLM outperforming the LSTM and GRU by a small margin. Notably,

the RNN models underperform the LLM during the zero-lower bound period and the early phase of

the COVID-19 pandemic as they systematically predicted rates higher than those observed. This

1. The calculations reported here are based on the Claude 3.5 Sonnet model Anthropic released in June 20 2024 and
accessed in April 2025.
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underscores the added value of incorporating qualitative information alongside quantitative data.

Furthermore, we find that, relative to the policy rate adjustments suggested by the models, the

actual policy rate path has been more persistent, with fewer rate changes over time, regardless

of whether the economy was in a low-rate environment, such as during the pandemic years, or

a high-rate environment, as during the post-pandemic high inflation period. Arguably, this finding

might suggest a recent policy change the models have not been able to capture fully. Finally, we

identify a potential structural shift in monetary policy conduct after 2020: had the FOMC followed the

implicit rules derived from our RNN models, it likely would have implemented smaller rate cuts during

the pandemic and consequently required less aggressive tightening when inflationary pressures

reemerged.

In the remainder of this document Section 2 reviews some selected applications of LSTM and GRU

networks, and LLMs in economics and finance. Section 3 describes the data and methods used to

implement the models, and Section 4 presents the results. Finally, Section 5 concludes by discussing

the results and their implications.

2 LSTM, GRU, and LLM applications in economics and finance

Modern recurrent neural networks, such as LSTMs (Hochreiter and Schmidhuber 1997) and GRUs

(Cho et al. 2014), were developed to address the main weakness of standard recurrent neural net-

works (RNNs), namely their difficulty for capturing long-term dependencies as exploding and van-

ishing gradients when using back-propagation during the training phase hampered their estimation

(Goodfellow, Bengio, and Courville 2016). Ease of calculation have partly contributed to the in-

creased prominence of LSTM and GRU networks in time series forecasting, as they can model

nonlinear dynamics and capture long-range dependencies. The LSTM and GRU-based forecast-

ing models rely on numerical data inputs, such as historical time series values, to identify temporal

patterns and make predictions.

An alternative approach to the use of modern RNNs involves leveraging the multimodality of LLMs,

which have proved very effective to understand and process various data types, including numerical

and textual data. When fed numerical data, LLMs can exploit their extensive training corpora, which

include qualitative information like textual descriptions, economic trends, or domain-specific knowl-

edge, to contextualize and enhance the forecasting task. LLM’s multimodal capability allows them to

potentially capture nuanced relationships that purely numerical models like LSTMs and GRUs might

miss, offering a complementary method for time series prediction.

2.1 LSTM applications

Initially applied to univariate time series, LSTMs have demonstrated consistent predictive gains over

classical linear models such as ARIMA and exponential smoothing, particularly when applied to
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macroeconomic indicators or financial series with nonlinear or regime-dependent behavior. In the

macroeconomic domain, LSTM models have been employed effectively in forecasting aggregate

output (Hamiane et al. 2023; Zhang, Wen, and Yang 2022; Hamiane et al. 2024; Xie et al. 2024;

Zhao 2024), anticipating turning points associated with economic and financial crises (Park and

Yang 2022), and producing inflation forecasts across medium- and long-term horizons (Lakshmi

Narayanaa et al. 2023; Zhao 2024; Liu and Lan 2025; Paranhos 2025). These models’ capacity

to internalize complex functional relationships without requiring explicit structural specification has

proven particularly advantageous in high-dimensional or noisy environments.

Applications in financial economics have similarly confirmed LSTMs usefulness. Their ability to

replicate intricate market dynamics has led to improved predictive performance across a range of

applications, including stock return forecasting (Serin and Kemalbay 2024; Furizal et al. 2024; Pilla

and Mekonen 2025), particularly at short horizons (Kobiela et al. 2022). LSTMs have also outper-

formed traditional univariate models in interest rate forecasting (Salem, Jummah, and Albourawi

2024) and financial risk modeling (Xu et al. 2024). Notably, when compared against the bench-

mark Generalized Autoregressive Conditional Heteroskedasticity (GARCH) framework of Bollerslev

(1986), LSTMs have yielded more accurate estimates of Value-at-Risk (VaR) in several empirical

settings (Ormaniec et al. 2022).2

LSTM have also been applied to analyze multivariate models. Cao, Li, and Li (2019) find that

LSTMs outperform vector autoregressions (VARs), particularly during high-volatility periods and

Hopp (2022) shows LSTMs are more accurate than dynamic factor models for nowcasting trade

aggregates. Using U.S. data, Chan-Lau and Quach (2025) report that quarterly LSTM models

clearly outperform VARs in one-step-ahead forecasts, with path dependence affecting the shock

propagation dynamics. Recent developments have introduced hybrid LSTM architectures to im-

prove forecasting accuracy. They incorporate attention mechanisms (Hollis, Viscardi, and Yi 2018;

X. Zhang et al. 2019; Ju and Liu 2021), combine them with other machine learning methods such as

SVR, CatBoost, or DFMs (Lashina and Grishunin 2023), hidden markov models (Sivakumar 2025),

and GRUs (Lawi, Mesra, and Amir 2021).

2.2 GRU applications

GRUs, with only two gates (functions) to process past and current information, are faster to train

than LSTMs, which have three gates, and tend to deliver better results in language modeling (Joze-

fowicz, Zaremba, and Sutskever 2015) and show a comparable performance in financial time series

forecasting (Shiri et al. 2024). In particular, their faster training speed made GRUs especially suit-

able for high frequency forecasting in finance. Examples include Dai (2025), who recommends gold

investment strategies partly based on a GRU’s long-term predictions; and Umezuruike et al. (2024),

2. However, in high-frequency contexts characterized by volatility clustering and microstructure noise, GARCH-type
models may continue to offer comparative advantages (Sezer, Gudelek, and Ozbayoglu 2020).
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which show that a GRU predicts stock prices better than LSTM and transformer models. Pirani et al.

(2022) find that a GRU model performs better than ARIMA and multiple LSTM variants when fore-

casting financial time series when data was processed in reverse order, that is, when the time steps

were traversed backwards.

As for economic applications, the results in Patel, Sanghavi, and Singh (2023) demonstrate that the

GRU and LSTM models perform equally well in forecasting U.S. GDP, outperforming traditional uni-

variate forecasting models such as ARIMA, exponential smoothing models, and their many variants.

Guo and Wang (2024) show that a GRU model, enhanced with feature engineering and exoge-

nous variables, significantly improves economic forecasting accuracy for ice and snow tourism. Zhu,

Zhang, and Tan (2025) obtain reasonable predictions GDP predictions using a GRU model that in-

clude among its explanatory variables power factors such as electricity consumption. However, it

is not necessarily the case that the most sophisticated models perform better. Naas and Zouaoui

(2024) identify linear regression as the top-performing model for forecasting exchange rate volatility,

with the GRU model ranking a close second.

As in the case of LSTMs, hybrid models are being developed rapidly with many of them including

both LSTM and GRU layers. Zhu et al. (2025), by replacing one of the gates in an otherwise standard

GRU model with an attention mechanism (Vaswani et al. 2017), obtain more accurate forecasts of

stock market movements in China and the U.S. Liu and Lai (2025) using a hybrid PCA-GRU-LSTM,

demonstrate that environmental factors could improve stock market forecasts. Gu et al. (2024) build

an ensemble exchange rate forecasting model, where the weak learners combines LSTM and GRU

layers, and AdaBoost serves to construct the final strong learner. They apply the model to different

currency pairs, including the U.S. dollar, the Chinese yuan, and the British pound.

2.3 LLM applications

The emergence of large language models, such as OpenAI’s GPT, Google’s PaLM, and Anthropic’s

Claude, has significantly advanced the integration of artificial intelligence into economic and financial

forecasting. Initially developed for understanding natural language, LLMs have shown great potential

in reasoning, simulation, and prediction tasks, suggesting promising and novel ways to conduct

macroeconomic modeling, market forecasting, and decision analysis.

Recent studies have evaluated LLMs’ capabilities in economic prediction tasks. Faria-e-Castro and

Leibovici (2024) examine the performance of a foundation model (Google’s PaLM) in generating

conditional forecasts of U.S. inflation. They find that the model’s forecasts are competitive with, and

often outperform, those from professional forecasters, especially over longer horizons. Similarly,

Carriero, Pettenuzzo, and Shekhar (2025) explore LLM-based forecasting for macroeconomic time

series. Their study shows that foundation models can match or exceed traditional models in out-of-

sample forecasting, suggesting potential for reducing model specification risk in economics.
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In finance, LLMs are being applied for sentiment analysis, risk modeling, and earnings prediction.

Wu et al. (2023) introduce BloombergGPT, a domain-specific LLM trained on a massive financial

text corpus. It outperforms general-purpose LLMs on various financial NLP tasks, such as question

answering and document classification. Kim, Muhn, and Nikolaev (2025) analyze the effectiveness

of prompting LLMs like GPT to perform financial statement analysis. They find that the LLM’s as-

sessments of earnings quality correlate strongly with future returns and outstrip the performance of

human analysts and traditional text-based models.

Another frontier application involves using LLMs to simulate economic decision-making. Horton

(2023) demonstrates that LLMs can replicate behavioral patterns uncovered by behavioral economic

experiments, including framing effects and loss aversion. Hao and Xie (2025) propose a multi-agent

framework using several LLMs as artificial economic agents for policy simulations. These agents

display heterogeneity and responsiveness to policy scenarios, illustrating how LLMs can be used for

dynamic agent-based modeling in economics.

While promising, the use of modern RNNs and LLMs raises critical challenges common to all AI

models. Model interpretability and reliability remain central concerns in economic applications. Mol-

nar (2022) emphasizes the importance of explainability in machine learning, highlighting techniques

to open the black box of LLM decision processes. Additionally, Fuster et al. (2022) show that ma-

chine learning models, if improperly deployed, may exacerbate existing inequalities, particularly in

credit and lending markets. This underscores the need for ethical and transparent model deployment

in finance.

3 Empirical implementation

3.1 Data

Analysts often rely on a core set of macroeconomic and financial indicators to anticipate the Federal

Open Market Committee (FOMC) policy decisions. These typically include inflation rates, unem-

ployment figures, GDP growth, labor market conditions, and asset price movements. In line with

this practice, our analysis incorporates a similar set of variables to inform both the recurrent neural

network RNN models, namely LSTM and GRU, and the LLM. While acknowledging that additional

explanatory variables could enhance the analysis, we deliberately focus on this core set to exam-

ine whether the fundamental information they contain is sufficient for accurate Federal Funds rate

prediction. The explanatory variables, sourced from Haver Analytics and the Federal Reserve Eco-

nomic Data (FRED), are listed in Table 1. The data sample period is January 1998 to April 2025, and

the observations reflect revised figures available as of August 2024 rather than real-time data. The

models’ results, hence, reflect the underlying structure of the economy rather than being nowcasts

of the Federal Funds rate.
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In the RNN-based models, some variables are transformed from raw data into lags, growth rates or

changes to improve stationarity and enhance model learning. In contrast, the LLM was prompted

directly using the level and growth information in tabular format, preserving the semantic of the raw

indicators. The input set for the LLM included monetary aggregates (M1 and M2), labor market

indicators (e.g., U-3 and U-6 unemployment rates, changes in nonfarm payrolls, average wages,

labor force participation), inflation measures (CPI, PPI, and PCE—both headline and core), inflation

expectations (1-year and 5-year), real GDP, and asset prices (housing and commercial real estate),

alongside their respective growth rates.

Table 1: RNN-based models: variables, description and data transformation

Haver code Description Data transformation

FF Federal Funds rate 1 month lag
FM2 Money stock (M2) Monthly change, YoY % change
GSACPPIC Green Street Advisors commercial property price index YoY % change
JCBM Personal consumption expenditure (PCE), chain price index YoY % change
JCXFEBM PCE less food & energy (core PCE), chain price index YoY % change
LANAGRD Change in total nonfarm employment Level (no transformation)
LEPRIVA Avg hourly earnings, total private industries Dropped from analysis
LKPRIVA Avg weekly earnings, production and nonsupervisory YoY % change
MGDPN Nominal GDP YoY % change
MLU6 U-6 unemployment rate MoM and YoY difference
PZRAW CRB spot commodity price index YoY % change
PCU CPI-U (all urban consumers) YoY % change
PCUSLFE CPI-U less food and energy YoY % change
USPHPIM FHFA house price index (purchase-only) YoY % change
YC_2y_10y Yield curve (10Y minus 2Y) Spread
YC_6m_1y Yield curve (1Y minus 6m) Spread

Sources: Haver Analytics and Federal Reserve Economic Data (FRED).

3.2 LSTM and GRU networks

The Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber 1997) and Gated Recurrent

Unit (GRU) (Cho et al. 2014) networks are specialised types of recurrent neural network (RNN) de-

signed to effectively learn and remember patterns in sequential data over long periods.3 LSTMs and

GRUs address the difficulties traditional RNNs encounter due to the potential presence of vanishing

and exploding gradients, which could cause relevant past information to be lost during the training

process. These modern RNNs avoid problems associated with badly-behaved gradients using a

memory and gating mechanism. Processing each input sequence element at a time, the networks

update their internal state with each new input, storing the information in a memory cell. The gates

control what information is added, retained, or discarded at each step, enabling learning new data

patterns while preserving valuable past knowledge.

3. Please see the appendix for a formal description of the networks. For more details, see the original references, and
the textbook treatments in Goodfellow, Bengio, and Courville (2016) and A. Zhang et al. (2023).
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The basic LSTM block include three gates—input, forget, and output— that regulate the flow of

information, allowing the network to selectively remember or forget data as needed. This structure

enables LSTMs to capture long-range dependencies and context, making them particularly well-

suited for tasks involving time series forecasting. GRUs were introduced as a simpler alternative

to LSTM networks, aiming to address the same challenge of capturing long-term dependencies

in sequences while reducing computational complexity. The GRU achieves this by combining the

memory cell and gating mechanisms into a more streamlined structure, using only two gates: the

reset gate and the update gate. These gates control how much of the previous information is retained

or updated with new input, allowing the network to adaptively remember or forget information as

needed.

Unlike LSTMs, which use separate input, output, and forget gates, a GRU block merges some

of these functionalities, resulting in fewer parameters and faster training times. The update gate

determines the extent to which the unit updates its activation or content, while the reset gate controls

how much of the past information to forget. This design enables GRUs to capture complex temporal

patterns and dependencies in data, making them well-suited for tasks like time series forecasting,

speech recognition, and natural language processing. Their simplicity and efficiency often allow

GRUs to perform comparably to LSTMs, making them preferable when computational resources or

training time are limited. Since our forecasting project is relatively small and resource constraints

are minimal, we use both models to compare their performance.

3.2.1 LSTM and GRU architecture

The LSTM and GRU architecture used is similar to the multi-step architecture in Chan-Lau and

Quach (2025) but specialized for forecasting a single variable. Let Xt be the vector collecting the

observations of the explanatory variables at time t, and n the number of lagged observations used

to predict the federal funds rate, yt. We set up the architecture by chaining n LSTM (or GRU) blocks

(or units) sequentially. In this setup, unit −i processes the information corresponding to the lagged

observation vector Xt−i, and transmits its output, summarized by the updated memory cell and hid-

den state, to the next block, unit −i+1. At the end of the chain, the hidden state of the last block, unit

−1, is input into a fully connected output projection head, consisting of a dropout layer followed by

two linear transformations with a rectified linear unit (ReLU) activation in between, to predict yt. This

setup allows the LSTM and GRU to learn a mapping function FΘ (Xt−1,Xt−2, . . . ,Xt−n) = yt,

where Θ represents the model parameters, that is, the weights and biases of the different compo-

nents of the neural network blocks.4

4. See Chan-Lau and Quach (2025) for details on how LSTM blocks are chained together. GRU blocks are similarly
chained together.
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3.2.2 Hyperparameter tuning, model training, and out-of-sample backtests

Hyperparameters are the settings or configuration choices that define the structure and learning

process of the RNN models before any training begins. Hyperparameter tuning is the process of

finding the best hyperparameter settings for the LSTM and GRU models. The hyperparameters

of interest are the number of hidden units, the learning rate, the dropout rate, the batch size, the

number of time steps (number of lagged observations and units), and the number of training epochs

(or number of complete passes through the entire training set).5 Once the hyperparameters’ values

are set, the model training process begins, during which the model parameters—such as weights

and biases—are estimated from the data. These model parameters are adjusted iteratively by the

learning algorithm to minimize the loss function and improve predictive accuracy.

To select the hyperparameters and estimate the model parameters, the dataset was divided into a

training set, covering all observations up to December 2015, and a test set, spanning January 2016

to April 2025. Within the training set, a five-fold time series cross-validation was implemented. In

this approach, each fold used a progressively larger subset of the training data for training, while the

subsequent time window served as the validation set. This setup ensured that the temporal structure

of the data was preserved, and that future data was never used to predict the past.

Hyperparameter tuning was performed using Bayesian optimization, which systematically searches

over a predefined range of hyperparameter values to identify the combination that minimizes the loss

function on the validation folds (Garnett 2023). Once the optimal hyperparameters were selected,

the model was retrained on the full training set before conducting a final evaluation on the test

set. For the LSTM, the selected hyperparameter values were 12 time steps, 109 hidden units, two

LSTM layers with no dropout, a learning rate of 0.0001, and 644 training epochs. For the GRU, the

hyperparameter values were 12 time steps, 188 hidden units, a single LSTM layer with no dropout,

a learning rate of 0.0002, and 449 training epochs.

In addition, recursive out-of-sample backtests were conducted to assess the predictive power of

the model in a real-time, nowcasting setting. This involved using an expanding window and re-

estimating the model at each point in time. Starting in January 2016, at any given period t, the

model was trained using the data sample ending in period t − 2, and afterwards, the observations

Xt−1 were used to predict the Federal Funds rate yt.

3.3 LLM model

The LLM employed in this analysis is a zero-shot implementation of Claude 3.5 Sonnet (developed

by Anthropic, released on June 20, 2024, and accessed in April 2025). This state-of-the-art model

is capable of processing not only structured economic data but also unstructured, qualitative in-

5. See Goodfellow, Bengio, and Courville (2016) and A. Zhang et al. (2023) for a comprehensive discussion of these
hyperparameters.
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formation—such as economic narratives, forward guidance, and geopolitical developments. It can

synthesize these diverse inputs to generate coherent, context-aware predictions and explanations.

A key advantage of using Claude 3.5 in this context lies in its ability to incorporate real-world context

into economic forecasting. This includes the model’s capacity to reason over policy signals, macroe-

conomic trends, and textual cues that may not be easily encoded in traditional statistical models.

However, like many LLMs, it is susceptible to certain limitations. One such issue is “knowledge leak-

age,” whereby the model may produce responses that suggest undue certainty about past events,

despite having no direct access to historical data. While this phenomenon complicates the retro-

spective validation of its predictions, its impact may be less pronounced when the model is used for

forward-looking analysis, such as forecasting future decisions by the Federal Reserve.

Our methodological approach consists of two key components. First, we explore the model’s ability

to generate real-time forecasts by prompting it to predict the Federal Reserve’s most recent policy

decision. In this step, the prompt was modified to explicitly request the model’s view on the likely

direction of policy—whether the Fed would raise, lower, or maintain the target rate—based on the

most current economic data and contextual indicators.

Second, we assess the model’s predictive accuracy by simulating historical forecasts of the Federal

Funds Target Rate and comparing them with actual outcomes. In this validation phase, the model

was provided with economic indicators and relevant contextual information available at the time

of each decision. It was then prompted to generate a forecast of the target rate, along with a

confidence estimate and a concise explanation of its reasoning. Together, these exercises allow us

to evaluate not only the model’s point forecasts, but also its interpretive and explanatory capabilities

when reasoning over contemporary economic scenarios.

When conducting retrospective simulations to assess the LLM’s underlying knowledge and predic-

tive capabilities, the prompt presented to the model was crafted to emulate a realistic forecasting

scenario and was structured as follows:

As an AI central bank advisor, review the past n months of U.S. economic data and

predict the Fed Funds Target Rate the FOMC is likely to set on target date. In addition,

please only use your knowledge up to the date of prediction.

The model was instructed to return its forecast in a consistent, structured format:

Predicted rate; confidence level; and explanation limited to 100 words.

This standardized prompt–response structure was implemented to ensure consistency across mul-

tiple simulations, enabling systematic comparison and reproducibility of the results. We also con-

strained its access to information that would have been available only up to the date of each fore-

cast—effectively emulating a real-time decision-making environment. We conducted a simulation
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comprising 100 historical replications in which the model generated forecasts for previous FOMC

meetings using only contemporaneous data. The average value of the replications was then com-

pared to the actual policy rate, which enabled us to assess the LLM’s aggregate forecasting behavior

and its ability to approximate the FOMC’s decisions over time.

4 Results

4.1 LSTM and GRU

Figure 1 displays the recursive out-of-sample predictions of the LSTM and GRU models. The fore-

casts closely track the FMOC rate decisions during the 2016-2019 rate normalization period and

the rapid tightening cycle which started in mid-2022. Table 2 shows several performance metrics,

including the root mean squared error (RMSE), the mean absolute error (MAE), and the mean bias

error (MBE). Most metrics indicate the models perform very well. For instance, the MAEs are only

0.12 and 0.15 percentage points for the LSTM and the GRU models respectively. The MBEs show

the forecasts are mostly unbiased.

Table 2: LSTM and GRU models: forecasting performance

Model RMSE MAE MBE

LSTM 0.1868 0.1164 -0.0051
GRU 0.2672 0.1476 0.0186

Note: RMSE (Root Mean Squared Error) and MAE (Mean Absolute Error)
measure the average size of forecast errors, with RMSE placing greater
weight on larger errors. MBE (Mean Bias Error) indicates the average di-
rectional bias: positive values correspond to overprediction; negative values
correspond to underprediction. All errors are in percentage points unless
otherwise indicated. Lower values mean more accurate estimates.
Sources: Haver Analytics and authors’ calculations.

While the forecasting performance is generally good, two periods stand out where the LSTM and

GRU models appear to have missed key rate dynamics: first, at the onset of the COVID-19 pan-

demic, and second, during 2021–22. These divergences between model forecasts and observed

federal funds rates can be interpreted if the models are viewed as providing guidance for policy

rate decisions. At the onset of the COVID-19 pandemic, both the LSTM-based and GRU-based

models missed the emergency rate cuts by the Fed in March 2020. As both models were trained

to be consistent with past FOMC behavior, they could not capture the preemptive rate cuts given

the favorable economic data recorded in March 2020.6 Nonetheless, the rapid deterioration of eco-

nomic conditions in April—driven by severe disruptions to global supply chains and the collapse of

the domestic economy due to lockdowns—highlighted the need for aggressive easing of monetary

6. The FOMC statements issued in March 03 and March 15, 2020, show that the FOMC, despite strong economic data,
decided to cut rates as it expected the pandemic to drive a rapid deterioration of the economy.
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Figure 1: Recursive Out-of-Sample LSTM and GRU predictions vs. actual Fed Funds rate

Sources: Haver Analytics and authors’ calculations.

conditions. The model aligns with this view, predicting that the Fed Funds rate should be negative.

However, this prediction conflicts with the lower bound policy rate, which prevents the Fed Funds

rate from going below zero—a constraint not explicitly incorporated into the models.7

Inflation accelerated rapidly in 2021-2022, but the FMOC kept the Fed Funds rate low, considering

the inflationary pressures to be transitory. In contrast, the LSTM and GRU models initially recom-

mended starting to raise rates early and to ease the monetary policy stance later on, which brought

its one-step rate forecasts closer to the observed policy rate path by mid-2022. Since the model

is estimated recursively, we attribute this convergence to the models updating their parameters by

learning from the most recent policy actions. From that point onward, both models’ predictions

mostly follow the FMOC decisions. Nonetheless, both models suggested another potential rate cut

in early 2024 and 2025.

From both episodes, during which the predictions diverge from the policy rate decision but only

briefly, we infer that the models’ parameters are being updated frequently on an online basis as

new data become available. In this regard, the model learns and captures in real-time how the

FMOC policy decision framework evolves over time, reflecting the rotation of committee members,

potential political pressures, and changing views and reassessments of the inflation outlook and its

potential drivers. However, it is instructive to consider what the model predictions would have been

if the policy framework had remained unchanged - that is, if we assume the decision process was

stable over time. This involves training the models on an earlier subsample to fix the model-implied

7. The bound could have been accommodated by including the following constraint on the output layer of the LSTM
and GRU: max(25bps, LSTM prediction).
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rate decision rules, and then applying the rules to a more recent subsample without further models’

updates. Comparing the models’ predictions in this second subsample to the observed Fed Funds

rate could provide insights into whether the policy decision framework changed over time.

We assess whether a policy shift occurred from 2020 onward using a simple counterfactual analysis.

When trained only on data through December 2019, the models predict that the FOMC would have

lowered rates in 2020 to counter the pandemic-induced economic contraction—driven in part by

supply-side shocks from lockdown measures—but not by as much as it ultimately did. This smaller-

than-observed rate cut can be attributed to the models’ reliance solely on hard numerical data. The

FOMC, however, had to account for heightened uncertainty surrounding the pandemic’s economic

impact, prompting a more aggressive easing stance. As the economic shock faded by mid-2021,

the models suggested that rates should begin rising. The FOMC delayed the start of the tightening

cycle, partly due to its view that inflation was transitory—a belief that likely contributed to the delay.

Arguably, policy during this period was also shaped by the adoption of the Flexible Average Inflation

Targeting (FAIT) framework in 2020, which allows inflation to run moderately above target following

periods of below-target inflation.

From 2022 onward, the policy rate began converging toward the model-implied rate and has re-

mained elevated since. However, the LSTM model currently suggests that rates should fall to about

3 percent—near the upper end of the 2–3 percent range viewed as neutral by market analysts.

The GRU model points to a relatively higher rate of 4 percent, though still below the actual pol-

icy rate. Similar results are obtained when the training sample ends in 2015. If evaluated against

pre-COVID model-implied policy rules, one could argue that changes in the policy framework led

the FOMC to ease too aggressively and tighten too slowly. Equally important, the RNN models’

implied decision rules suggest that, despite the models’ propensity for more frequent rate adjust-

ments, the FOMC tends to keep rates unchanged for longer periods at both low and high interest

rate levels—maintaining either an accommodative or tight policy stance for extended durations rela-

tive to pre-pandemic behavior. This points to a possible shift toward a more gradualist approach in

monetary policy implementation.
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Figure 2: LSTM and GRU: counterfactual Fed Funds rate analysis,
training period Jan. 1998 - Dec. 2019

Sources: Haver Analytics and authors’ calculations.

Figure 3: LSTM and GRU: counterfactual Fed Funds rate analysis,
training period Jan. 1998 - Dec. 2015

Sources: Haver Analytics and authors’ calculations.
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4.2 LLM

4.2.1 Real time prediction

A key strength of LLM in economic forecasting lies in their ability to incorporate and contextualize

real-time developments directly within the prompt. A prompt is the textual input provided to a LLM

to guide its response. It defines the task; provides context such as background facts, a scenario or

economic indicators; and may include input data, instructions, examples, or questions. The prompt

serves as the starting point from which the model generates its output, drawing on patterns learned

during training. Hence, the LLM is able to interpret not only historical data but also contemporary

macroeconomic conditions and policy signals, including qualitative data and unstructured data.

As an example, we prompt the LLM to obtain the real-time forecast of the Federal Reserve’s most

recent policy decision in March 2025. In this example, the prompt included a reference to ongo-

ing trade policy uncertainty—such as the imposition of U.S. tariffs—to assess how such qualitative

context might influence the model’s reasoning. When prompted with this additional information, the

model returned the following forecast:

Direction: unchanged

Explanation: Based on the data, inflation appears to be moderating with CPI and PCE

growth rates declining. Unemployment remains low at 4.1 percent. However, GDP

growth is slowing and trade tensions create uncertainty. The Fed may hold rates to

balance inflation control with economic support, given mixed signals and external risks.

This simple example demonstrates the model’s capacity to synthesize up-to-date economic narra-

tives, including inflation trends, labor market conditions, and geopolitical risks, into its policy as-

sessment. By incorporating structured data alongside recent qualitative developments, the model is

able to produce forecasts that are also grounded in a coherent rationale. This interpretive capability

makes it a valuable complement to traditional quantitative forecasting methods, such as the RNN-

based models described earlier, as these methods may overlook contextual or geopolitical factors.

Nonetheless, LLMs remain prone to surface-level reasoning and may generate confident-sounding

outputs without a grounded causal framework. As such, their predictions are best used in conjunc-

tion with other forecasting approaches to provide a more comprehensive and balanced view.

4.2.2 Prediction validation

Figure 4 displays the individual predictions from each of the 100 LLM’s replications in the simula-

tion described in Section 3.3 as well as the average prediction across all replications. Overall, the

predicted policy rate generated by the LLM closely tracks the actual federal funds rate and exhibits

a better alignment than the RNN-based models. This improved performance likely stems from the

LLM’s ability to draw on a broader and more diverse information set, including not only quantitative
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economic indicators, but also text-based inputs such as forward guidance and macroeconomic nar-

ratives that shape policy expectations. Moreover, as the LLM incorporates qualitative information, it

respects the zero lower bound constraining the policy rate not to fall below 25 bps, a constraint that

the RNNs violate as it was not explicitly included in the models’ setup. The ability to process such

qualitative context allows the LLM to complement traditional inputs and produce forecasts that better

reflect the Fed’s decision-making environment. Note, however, that this is offset by the finding that

prior to the COVID-19 pandemic, the LLM predictions exhibit an upward bias vis-a-vis the observed

policy rates. Taken at face value, the LLM suggests the policy rate could have been slightly higher

during the pandemic period, in agreement with the RNNs’ predictions.

Figure 4: Average Predictions of LLM vs Actual Fed Fund Rate

Sources: FRED, Haver Analytics, and authors’ calculations.

The interpretive capacity of the LLM is illustrated in the forecast plot, where the average prediction

from 100 replications follows the actual policy rate closely, while the spread of individual simula-

tions highlights the range of plausible paths the model considered. In itself, this is an interesting

finding. While large language models (LLMs) are often associated with variability and hallucina-

tions—particularly in natural language tasks such as open-ended question answering or creative

writing—their behavior in structured numerical forecasting tasks appears markedly different. In our

setting, where the LLM is tasked with forecasting the federal funds rate based on a fixed set of

numerical and textual economic indicators, we observe remarkably low variance across 100 repli-

cations using the same input. This consistency contrasts sharply with LLM performance in more

generative domains, where outputs can vary significantly between runs, even with identical prompts.
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LLM hallucinations in certain domains typically occur because the model must infer or "fill in" missing

or underspecified information, drawing on broad patterns learned during pretraining. These infer-

ences may result in plausible but factually inaccurate responses, especially when the model is asked

to generate open-ended text without grounding in verifiable data. In contrast, when used for numer-

ical forecasting with well-specified inputs and a constrained output space, the model’s generative

behavior is more tightly anchored to the data. As a result, the scope for hallucination is limited, and

the model tends to produce consistent and stable predictions.

To evaluate the LLM’s predictive performance and the absence of hallucinations more systematically

we compute three standard error metrics, MSE, RMSE, and MAE, for each of the 100 replications.

On average, the model achieves an MSE of approximately 0.0311, an RMSE of 0.1762, and an MAE

of 0.1483. The distribution of errors is relatively narrow, with RMSE values ranging from 0.158 to

0.201 and MAE values between 0.140 and 0.161, indicating a high degree of stability in the model’s

outputs across repeated runs. These results indicate the LLM provides consistently accurate fore-

casts of the federal funds rate, particularly when considering both squared and absolute deviations.

Table 3 summarizes the distribution of the three error metrics.

Table 3: LLM Forecast Errors: simulation summary statistics

Statistic MSE RMSE MAE

Number of replications 100 100 100
Mean 0.0311 0.1762 0.1483
Std. deviation 0.0034 0.0097 0.0045
Minimum 0.0250 0.1581 0.1398
10th Percentile 0.0274 0.1656 0.1425
25th Percentile 0.0286 0.1692 0.1452
Median 0.0308 0.1754 0.1474
75th Percentile 0.0334 0.1829 0.1516
90th Percentile 0.0355 0.1885 0.1542
Maximum 0.0405 0.2013 0.1606

Note: MSE (Mean Squared Error), RMSE (Root Mean Squared Error) and
MAE (Mean Absolute Error) measure the average size of forecast errors. All
errors are in percentage points unless otherwise indicated. Lower values
mean more accurate estimates.
Sources: Haver Analytics and authors’ calculations.

We now examine two episodes where the model’s forecast diverges from the actual policy decision

and prompt the LLM to explain each discrepancy. The first occurs in early 2020, when the LLM pre-

dicts a rate cut to the zero lower bound. The second is in early 2024, where the model suggests that

the policy rate should be lower than the rate actually observed. Since there were 100 replications,

we present below a representative sample of the LLM’s explanations for each deviation.
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For the March 2020 deviation, the LLM suggests that a rate cut is imminent in order to respond

rapidly to the severe economic disruption. One explanation is as follows:

Given severe economic disruption from COVID-19 pandemic, including sharp rise in

unemployment and negative GDP growth, the Fed is likely to cut rates to near-zero to

provide maximum monetary stimulus. Recent data shows rapid economic deterioration

requiring urgent policy response.

The LLM’s explanations suggest that a cautious rate cut could be considered as inflation moderates,

while the labor market remains strong and GDP growth stays positive. A few such explanations are

as follows:

Based on recent data, inflation is moderating but remains above target. Unemployment

is low and GDP growth is steady. The Fed may maintain a slightly restrictive stance to

ensure inflation continues downward, but could consider a small rate cut if economic

conditions warrant.

Based on recent economic data, inflation appears to be moderating but remains above

the Fed’s 2% target. Labor market remains strong with low unemployment. GDP growth

is positive but slowing. The Fed may continue its cautious approach, potentially imple-

menting a small rate cut to support economic growth while monitoring inflation closely.

Based on recent economic data, inflation appears to be moderating but remains above

the Fed’s 2% target. Labor market remains tight with low unemployment. GDP growth

is steady. The Fed may maintain current rates or make a small cut to support economic

growth while ensuring inflation continues to decline.

While these findings are encouraging, it is important to acknowledge a potential limitation. The

model, as any other LLM, may benefit from hindsight or lookahead bias (Sarkar and Vafa 2024), as

its underlying training data could include documents or narratives released after the forecast dates.

This access to future knowledge might partially explain the model’s apparent ability to anticipate pol-

icy decisions and possibly its relative performance deterioration at the end of the sample.8 Caution

is therefore warranted when interpreting these results. That said, this concern is less relevant for

forward-looking forecasts, where the model necessarily lacks access to future outcomes and must

rely solely on contemporaneous information.

8. One possible safeguard is to mask or remove explicit date information from the input dataset to prevent the model
from anchoring predictions to known historical events. However, this strategy may only offer limited protection, as many
macroeconomic indicators contain temporal signals, such as seasonality or structural shifts, that can implicitly reveal the
time period. Thus, even without date labels, the model may still infer approximate timing. Ludwig, Mullainathan, and
Rambachan (2025) suggests some potential solutions, such as using only open-source LLMs specifying knowledge cutoff
dates. Even in this case, however, the effective cutoff date might differ from the official date (Cheng et al. 2024).
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5 Conclusions

Forecasting the U.S. federal funds rate remains an analytically complex yet policy-relevant task,

given its central role in transmitting monetary policy to financial conditions, capital flows, and macroe-

conomic outcomes. The inherent difficulty lies in the discretionary and evolving nature of monetary

policy, which must weigh a broad set of economic, financial, and geopolitical considerations—many

of which are difficult to formalize or quantify within standard econometric frameworks.

This paper investigates the potential of artificial intelligence (AI)–based approaches to augment

monetary policy analysis, focusing on the predictive capabilities of recurrent neural networks (LSTM

and GRU) and a large language model (LLM) in forecasting the federal funds rate. While LSTM

and GRU architectures are well-suited for modeling temporal dependencies in structured numerical

data, the LLM introduces a novel dimension by leveraging unstructured textual inputs, including

central bank communication and economic narratives, which may carry implicit forward guidance or

sentiment cues not captured by quantitative indicators.

Empirical results indicate that all three models generate forecasts that are broadly consistent with

observed policy decisions. The LLM demonstrates a modest performance edge, particularly in

episodes where qualitative signals, such as shifts in communication strategy or geopolitical shocks,

appear to exert a stronger influence on policy outcomes. The RNN models accuracy declines during

the zero lower bound period and the early phase of the COVID-19 pandemic, likely reflecting high un-

certainty and deviations from historical policy rules. Forecast performance improves post-pandemic,

as macroeconomic conditions and policy responses begin to normalize.

The decision rules inferred from the RNN-based models suggest a systematic preference for more

frequent rate adjustments than observed in actual FOMC behavior. Instead, the empirical record

points to a pattern of policy inertia, with the FOMC maintaining rates at the lower or upper bound of

the range for prolonged periods—potentially reflecting a shift toward a more gradualist policy stance,

consistent with the adoption of the Flexible Average Inflation Targeting (FAIT) framework.

Overall, the findings underscore the potential of AI-based forecasting tools to complement tradi-

tional policy analysis. While such models are not a substitute for structural economic reasoning or

institutional insight, they can serve as valuable inputs in environments characterized by uncertainty,

narrative-driven dynamics, and evolving policy frameworks. As the role of qualitative information

in monetary policy continues to expand, the integration of language-based models into forecasting

toolkits may offer a promising avenue for future research and operational use.
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A LSTM and GRU models: mathematical formulation

This appendix draws heavily on A. Zhang et al. (2023).

A.1 Long Short-Term Memory (LSTM) Networks

LSTMs manage information through a sophisticated memory cell mechanism that can selectively retain, up-
date, or forget information across long sequences. The key innovation lies in memory cells equipped with
multiplicative gates that regulate information flow, enabling the network to capture long-term dependencies in
sequential data. Figure A1 shows the internal structure of the LSTM memory cell and the computation flow,
which are explained next.

Each memory cell is equipped with an internal state and a number of multiplicative gates that determine
whether (i) a given input should impact the internal state (the input gate), (ii) the internal state should be
flushed to 0 (the forget gate), and (iii) the internal state of a given neuron should be allowed to impact the
cell’s output (the output gate).

Input Gate, Forget Gate, and Output Gate

The data feeding into the LSTM gates are the input at the current time step and the hidden state of the
previous time step. Three fully connected layers compute the values of the input, forget, and output gates.
Formally, let Xt ∈ Rn×d be the minibatch input and Ht−1 ∈ Rn×h the hidden state in period t, where n is
the batch size and d the size of an input observation. Correspondingly, the gates at time step t are defined
as follows: the input gate, It ∈ Rn×h; the forget gate Ft ∈ Rn×h; and the output gate Ot ∈ Rn×h. They are
defined as:

It = σ(XtWxi +Ht−1Whi + bi),

Ft = σ(XtWxf +Ht−1Whf + bf),

Ot = σ(XtWxo +Ht−1Who + bo),

where σ is the sigmoid activation function, Wxi,Wxf,Wxo ∈ Rd×h and Whi,Whf,Who ∈ Rh×h are weight
parameters and bi,bf,bo ∈ R1×h are bias parameters.

Input Node

The input node C̃t ∈ Rn×h, an auxiliary node, plays an important role in the acquisition of new information.
Its computation at time step t is given by:

C̃t = tanh(XtWxc +Ht−1Whc + bc),

where Wxc ∈ Rd×h and Whc ∈ Rh×h are weight parameters and bc ∈ R1×h is a bias parameter.

Memory Cell Internal State

In LSTMs, the input gate It governs how much of the new data is acounted for via C̃t and the forget gate Ft

addresses how much of the old cell internal state Ct−1 ∈ Rn×h is retained. Together, they update the internal
state according to:

Ct = Ft ⊙Ct−1 + It ⊙ C̃t.

where ⊙ is the Hadamard (elementwise) product operator.
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Hidden State

Finally, the hidden state Ht is computed using the output gate and the memory cell internal state:

Ht = Ot ⊙ tanh(Ct),

which together with the cell internal state, is passed to the next LSTM memory cell. Once the final memory
cell is reached, the final hidden state is input into a fully connected output projection head consisting of a
dropout layer followed by two linear transformations with a ReLU activation to predict the policy rate.

Figure A1: LSTM memory cell

Source: A. Zhang et al. (2023).

A.2 Gated Recurrent Unit (GRU) Networks

The GRU manages information through a streamlined gating mechanism that controls how much past infor-
mation to retain and how much new information to incorporate at each time step. The key difference with the
LSTM lies in a simpler two-gate structure while maintaining the ability to capture long-term dependencies in
sequential data with reduced computational complexity. Figure A2 shows the GrU memory cell structure and
computation flow, which are described next.

Reset Gate and Update Gate

There are two gates, the reset gate and the update gate, with sigmoid activation functions. The reset gate
controls how much of the previous state information is preserved and the update gate controls how much of
the information in the new state is the same as in the old state.

Formally, for a given time step t let Xt ∈ Rn×d be the minibatch input and Ht−1 ∈ Rn×h the state in the
previous time step. The reset gate Rt ∈ Rn×h and update gate Zt ∈ Rn×h are:

Rt = σ(XtWxr +Ht−1Whr + br),

Zt = σ(XtWxz +Ht−1Whz + bz),
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where Wxr,Wxz ∈ Rd×h and Whr,Whz ∈ Rh×h are weight parameters and br,bz ∈ R1×h are bias
parameters.

Candidate Hidden State

The candidate hidden state H̃t ∈ Rn×h in the GRU plays the same roll as the memory cell internal state in
LSTM. It is computed using the reset gate:

H̃t = tanh(XtWxh + (Rt ⊙Ht−1)Whh + bh),

where Wxh ∈ Rd×h and Whh ∈ Rh×h are weight parameters and bh ∈ R1×h is a bias parameter.

Hidden State Update

The final hidden state Ht is computed as a convex combination of the previous hidden state and the candidate
hidden state:

Ht = Zt ⊙Ht−1 + (1− Zt)⊙ H̃t.

Similarly to the LSTM, the cell internal state and hidden states are passed to the next GRU memory cell
sequentailly until reaching the final memory cell. Then the hidden state serves as an input to a projection
head sharing the same architecture as that in the LSTM model to predict the policy rate.

Figure A2: GRU memory cell

Source: A. Zhang et al. (2023).
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