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Abstract 

 
We develop a mixed-frequency, tree-based, gradient-boosting model designed to assess 
the default risk of privately held firms in real time. The model uses data from publicly-
traded companies to construct a probability of default (PD) function. This function 
integrates high-frequency, market-based, aggregate distress signals with low-frequency, 
firm-level financial ratios, and macroeconomic indicators. When provided with private firms' 
financial ratios, the model, which we name signal-knowledge transfer learning model 
(SKTL), transfers insights gained from 35 thousand publicly-traded firms to more than 4 
million private-held ones and performs well as an ordinal measure of privately-held firms' 
default risk.  
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1 Introduction

The reliable assessment of a firm’s default risk is an important task of credit analysts, loan officers,
auditors, and risk managers. The evaluation determines loan terms, screens insolvent and high-
risk borrowers, and helps to manage credit risks adequately. Real-time default risk evaluation
becomes critical when market conditions deteriorate rapidly, as during crisis episodes and economic
recessions. Even in the absence of a crisis or recession, financial conditions can deteriorate rapidly.
For instance, in the post-COVID-19 pandemic period, the threat of high inflation has prompted
central banks to raise rates rapidly, increasing funding and borrowing costs. This situation threatens
the viability of the non-financial corporate sector, where debt levels have doubled as borrowers
benefited from the low-interest rate environment post the 2008 global financial crisis through the
pandemic (Adasoro et al., 2021).

In isolation, corporate default crises do not impact the real economy as severely as banking crises
(Giesecke et al., 2014). Nevertheless, widespread defaults in the corporate sector may distress the
banking sector and pose risks to financial stability. Therefore, timely surveillance of default risk at
the firm level should be a key element in macro-financial surveillance.

Assessing the default risk of exchange-listed and publicly traded firms is easy due to the abun-
dance of market data. Currently, several commercial firms provide probability of default (PD)
estimates for these firms using the market prices of their traded securities and balance sheet infor-
mation from their corporate reports. In contrast, it is costly and difficult to get credit ratings or
credit risk assessments for privately-held, non-listed firms. Furthermore, when ratings and assess-
ments are available, they are updated infrequently and with significant delays. This makes them
unsuitable for monitoring risk in real-time.

This is an unfortunate situation, as the importance of privately held firms dwarfs that of publicly
traded firms. Over 99% of firms in Europe and the US are not listed in stock markets but account
for a significant fraction of the economy (Anderson, 2009; Kalemli-Ozcan et al., 2020). There is also
evidence that exchange-listed firms are becoming less important to the US economy, with shrinking
contributions to employment and GDP (Schlingemann and Stulz, 2022), a trend likely present
in other economies. In the context of corporate credit risk and its macroeconomic and financial
stability implications, the risks posed by privately-held firms are comparable to those posed by
publicly-traded firms .1

Two questions arise naturally. Can market signals and models fitted to a small set of publicly-
traded firms offer insightful information about the default risk of the larger segment of privately-held
firms? And if this is the case, are these models suitable for real-time risk monitoring?

This paper addresses both questions by introducing the Signals-Knowledge Transfer Learning
(SKTL) Model. Within this model, “signals” refers to the real-time financial condition of publicly

1For 13 out of 20 economies covered in the paper, the aggregate total assets of privately-held firms exceed that of
publicly-listed firms.
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traded companies, as summarized by their market-price-based probability of default. “Knowledge”
indicates the functional form that maps publicly traded firms’ features to their PDs. “Transfer
learning” is about applying this method to privately held firms. Thus, the paper contributes to the
literature on estimating PDs for privately held firms in two significant ways. First, the approach
computes an “average” probability of default for each industry sector, using the market-based
PDs from firms within that sector. This average is then used to predict the default probability
of privately held firms, enhancing the real-time evaluation of their financial distress. Second, it
transfers the functional mapping from publicly traded firms’ features to PD to the domain of
privately held firms, allowing the estimation of PD for privately held firms without the need for
their default data.

The SKTL model is founded on the premise that, despite the differences between publicly
traded and privately held firms, despite differences across publicly traded and privately held firms,
the functional form connecting firms’ features to their default probabilities is likely to be simi-
lar. This similarity suggests that changes in financial condition indicators, such as balance sheet
variables, affect the risk of default in a comparable manner for both types of firms. For example,
an increase in leverage signals rising financial distress for both publicly traded and privately held
firms. Understanding the PD function for publicly traded firms will, therefore, help us understand
privately held firms’ PD. This concept draws parallels with transfer learning in machine learning,
where knowledge acquired from addressing one problem is repurposed for solving a different, albeit
related, problem (Weiss et al., 2016).

The SKTL model includes as covariates: macroeconomic variables; “average”, sector-specific
PDs for publicly traded firms (from now on, sectoral PDs); and firm-specific features available
for publicly and privately held firms. These firm-specific features, usually derived from balance
sheet data and income statements, are standard in models predicting corporate default. However,
they are often reported with a delay and only updated annually or semi-annually. By including
both high-frequency macroeconomic variables and aggregate sector PDs, the model allows for a
more timely assessment of a firm’s default risk. This is because firms’ financial health is influenced
by broader economic conditions and sector-wide risk trends, making timely updates crucial for
accurate risk evaluation. The importance of including sectoral PDs cannot be overstated, as mid-
year observations serve to “nowcast” year-on-year changes of the financial ratios of privately held
firms.2 Different data frequency requires setting up the PD model as a mixed-frequency tree-based
gradient boosting model. We select the LightGBM model (Ke et al., 2017a) because of its robust
performance in the panel setting (Barboza et al., 2017).

Arguably, the PDs of privately held firms generated by the model might be biased vis-a-vis
publicly traded firms since they have restricted access to equity financing. The PDs, however, can
still serve as an ordinal measure of firms’ financial distress, and allow us to compare the level of

2Industry or sectoral effects are important for predicting bankruptcy - see, e.g., Chava and Jarrow (2004).
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financial distress across firms and periods. Also, the SKTL model could be adversely affected if a
distribution shift is present in the data – conditional on a firm’s features, the target conditional
distribution of the PDs of privately held firms is different from that of publicly traded firms.3

To assess whether distribution shift is a problem, we construct a dataset of privately held firm
default events covering eleven advanced economies – France, Germany, Hong Kong, Italy, Japan,
Korea, Netherlands, Singapore, Spain, the UK, and the US – and nine emerging market economies
– Brazil, China, India, Malaysia, Philippines, Poland, Thailand, Russia and Vietnam.4 The good
performance of the SKTL model on this dataset enables us to generate real-time PD estimates for
more than three million privately held firms, up from the thirty thousand publicly traded firms
used to estimate the model.

The remainder of the paper is organized as follows. Section 2 reviews the relevant academic
literature, providing a context for this paper’s contribution. Section 3 introduces data used for the
analysis. Section 4 motivates sectoral PDs as predictors by examining how market-based publicly-
traded firm PD can help predict key measures of privately-traded firms’ profitability, liquidity, and
solvency. Section 5 describes the model estimation and evaluation. Section 6 shows two case studies
and evaluates the model’s real-time performance. Section 7 concludes.

2 Literature Review

The paper is related to the academic literature covering corporate default prediction and risk
estimation. Modern modeling approaches can be grouped into two categories: structural risk
models and reduced-form models.5 The structural risk approach builds on the insight, first noted
by Merton (1974) and Black and Scholes (1973), that the two main components of the capital
structure of a firm, debt and equity, are derivative securities of the underlying asset value of the
firm. One key risk measure derived in structural credit risk models is the Distance-to-Default (DD),
a volatility-adjusted leverage ratio that quantifies the buffer available to a firm over what it owes
to its creditors.6

The reduced-form, or intensity-based, approach models a firm’s default rate as a function of both
firm-specific and broader economic variables. Early examples of these models include Jarrow and
Turnbull (1995), Madan and Unal (1998), Lando (1998), and Duffie and Singleton (1999). Reduced-
form models are numerically tractable since they resemble dynamic term structure models closely.

3See Storkey (2009) and Ben-David et al. (2010) for a discussion of distribution shifts and their implications for
model performance.

4The number of default events is not large enough to estimate a model specifically for privately held firms.
5Bakshi et al. (2022) provide an up-to-date survey of modeling approaches and estimation methods.
6The DD is widely used by several risk providers, such as Moody Analytics (Crosbie and Bohn, 2002) and the

National University of Singapore’s Credit Research Initiative (Duan and Wang, 1994). Since the economic asset
value of the firm is a latent variable, several approaches have been proposed to estimate it using equity prices and
balance-sheet data, such as maximum likelihood (Duan, 1994), and iterative methods (Vassalou and Xing, 2004).
Once asset values are estimated, it becomes possible to calculate the DD.
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Compared to structural models, they can incorporate a larger number of covariates. However,
they often lack economic interpretability as, by design, these models prioritize statistical fit over
theoretical grounding.

Early work on corporate failure prediction, such as the seminal papers of Beaver (1966) and
Altman (1968), proposed models relying on accounting-based financial ratios to evaluate the like-
lihood of failure of a firm. In contrast, modern default risk models, either structural or reduced,
are estimated using both accounting-based data and the market prices of the securities issued by
the firm.7 Several studies, among others Hillegeist et al. (2004), Bharath and Shumway (2008),
Duffie et al. (2007) and Campbell et al. (2008), have shown that models that use both market and
accounting data outperform those that only use the latter.

Advances in credit risk modeling have predominantly centered on publicly traded firms, either
because models had to be calibrated using market-based data or because the goal was to replicate
the observed prices of the securities issued by these entities. Research in modeling the default risk
of privately held firms has not progressed at the same pace. The two main modeling approaches
discussed earlier are not feasible without market-based information unless modelers adopt some
market price proxies. Moreover, the application of accounting-based models faces its own set of
hurdles. Data from privately-held firms tend to be reported less frequently, suffer from signif-
icant delays, and lack the breadth and depth of information compared to their publicly traded
counterparts.

To compensate for the data shortcomings, several academic studies and industry reports cover-
ing privately-held firms rely on supervisory or proprietary datasets. For example, Falkenstein et al.
(2000) introduced Moody’s RiskCalc default model and calibrated it using a proprietary financial
statement dataset covering firms in Canada and the US. One major finding was that the relation-
ship between financial variables and default risk could be substantially different between publicly
traded and privately held firms, suggesting that a distribution shift might invalidate extending
models first calibrated to publicly traded firms to privately-held firms. Zhou et al. (2006), building
on and extending earlier work by Cangemi et al. (2003) for French firms, estimated private firm
default probabilities for North American firms using maximum expected utility models derived
from an ℓ1 regularized maximum likelihood problem and calibrated using financial ratios, economic
indicators, and industry market prices from a Standard and Poor’s dataset.

Bhimani et al. (2010) used data collected by the central bank of Portugal to estimate a logit
default prediction model. In addition to accounting ratios, the model included as covariates the
industry classification, geographic location, and firm size. The results suggest that the information
gathered only from accounting ratios is insufficient to capture default risk. Supporting this finding,
Dierkes et al. (2013) found that, for German privately-held firms, the accuracy of default risk

7While possible, incorporating market-based data in structural models is more difficult than in reduced-form
models. See, for instance, Miao et al. (2018), where the authors use forward-looking option prices to estimate DD
measures.

5



prediction models improved substantially if covariates included credit registry information on the
creditworthiness, order book, and payment history of the firm. Charalambakis and Garrett (2019)
found that a multi-period logit model including financial statement and income-based covariates,
real GDP growth, and export dummies could predict well the probability of financial distress of
a large dataset of Greek firms over short and long-time horizons. Altman (2013) showed that the
original Altman Z-score model, presented in Altman (1968), could be extended to privately-held
firms by estimating the model after substituting the book value of the firm for its market value.

Finally, this paper’s transfer-knowledge approach follows the spirit of Duan et al. (2018). The
authors estimated a mapping from financial ratios to the Distance-to-Default in the former set of
firms before applying to the latter using a proprietary dataset of Korean privately held firms. The
map allowed them to estimate the default probability’s term structure using a forward intensity
model including balance sheet variables and macro-risk factors. The forward intensity model out-
performed alternative models including Logit, Probit, and Altman’s Z-score. The accuracy ratio,
at 0.5, was slightly better than random guessing.

3 Data: Sources and Transformations

Estimating the SKTL model requires firm-level balance sheet data and publicly traded firms’ PDs.
We collected balance sheet data from the Orbis dataset and PDs from the Credit Research Initiative,
National University of Singapore (NUS-CRI). To account for the impact of business cycles on the
financial conditions of the firms we include GDP growth rates and inter-bank interest rates from
Datastream and Federal Reserve Economic Data (FRED). To assess the SKTL model’s performance
in the domain of privately held firms, we construct a bankruptcy dataset based on Orbis firm status
data. The dataset, described below, covers firms in eleven advanced economies – France, Germany,
Hong Kong, Italy, Japan, Korea, Netherlands, Singapore, Spain, the UK, and the US – and nine
emerging market economies – Brazil, China, India, Malaysia, Philippines, Poland, Thailand, Russia,
and Vietnam.

3.1 Orbis Balance Sheet Data

The firm-level balance sheet data, reported at annual frequency, are sourced from the historical
financial dataset of the Orbis database, which links several data vintages. For advanced economies,
we use data from 1995 onwards to match the data availability in the CRI-PD dataset. For emerging
markets, the Orbis data start at later dates, ranging from 1997 to 2005. Firms with total assets
below USD 1 million are dropped for three reasons: first, Bajgar et al. (2020) shows that Orbis’
smaller firms coverage is not representative of the actual small firms’ distribution; second, Altman
et al. (2017) shows that financial ratios of small firms tend to be unstable and not suitable for
financial distress prediction; third, the SKTL model’s calibration is based on data from publicly-
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traded firms, which are, on average, significantly larger than privately-held firms. This discrepancy
suggests that the model may be more accurately applicable or effective among larger privately-held
firms.

We clean the balance-sheet observations following the procedure proposed by Kalemli-Ozcan
et al. (2015):

1. We exclude firms if any of the following conditions are satisfied:

(a) any of their recorded sales, total assets, or total fixed assets are negative;

(b) any of the following balance sheet items are missing: total assets, shareholders’ funds,
current liabilities, noncurrent liabilities, operating revenue, and net income;

(c) the observation is an outlier outside the 99.9% percentile of sales-to-asset ratio, number
of employee-to-asset ratio, and number of employee-to-sales ratio.

2. We drop duplicate records of a firm by eliminating observations from the unconsolidated
account when the consolidated account is available at the year;

3. To further remove duplicated data, for each unique Orbis identifier (BvD ID) we select only
the last observation in each report year. The report year of a balance sheet is its fiscal year
when the closing date is after June. Otherwise, the report year of a balance sheet is the
preceding fiscal year.

Table 1 (panels A, B, and C) presents the list of firm characteristics and financial ratios retrieved
and computed using Orbis data. The financial ratios are grouped into three broad categories:
liquidity, profitability, and solvency. In addition to financial ratios, we also include the number of
employees, total assets in constant price (2015 USD), and industry sector (NACE Rev. 2 main
section) as predictors. To reduce the number of outliers, only firms’ observations for which the
denominator in their financial ratio exceeds 100 USD are kept; missing values are assigned if the
condition is violated. This measure also removes cases where the denominator is negative, which
makes the resulting ratio uninterpretable, e.g., profit margin computed from negative operating
revenue as the denominator.

Table 2 presents the summary statistics of the key firm’s features collected from the Orbis
dataset. After cleaning and filtering data, the sample includes more than 4 million firms, of which
around 35 thousand are publicly traded. Despite its widespread usage in empirical studies, the
representativeness of the dataset varies across countries due to differences in reporting requirements
and firm coverage. For example, European countries require mandatory reporting to the national
business registers, while the US does not. The coverage of privately held companies is visibly low
in Brazil, Hong Kong, Netherlands, and the US, as demonstrated by significantly fewer privately
held firms and significantly higher total assets, with medians exceeding 20 million USD. In these
countries the sample might not be representative since, in general, privately held firms typically
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have a smaller scale compared to their publicly traded counterparts, with their median solvency
ratios often being lower, indicating lesser equity financing and reduced capital buffers. However,
regarding return on assets and liquidity ratios, there are no consistent patterns across countries
to suggest whether privately held firms’ balance sheets are stronger or weaker relative to publicly
traded firms.

3.2 NUS-CRI Probability of Default dataset

NUS-CRI calculates PDs using the forward-intensity model of Duan et al. (2012). The model con-
siders two independent doubly stochastic Poisson processes, one for delisting (exits) due to default
events and the other for delisting due to other reasons. Model inputs include, at the economy-wide
level, the stock index return, the short-term risk-free rate, and the median distance-to-default (DD)
of the firms listed in the economy’s stock exchange. At the firm level, the model inputs include
the firm’s distance-to-default, the firm’s idiosyncratic volatility, the following ratios: cash to total
assets, current assets to current liabilities, net income to total assets; and the relative size and
market-to-book ratio of the firm with respect to the corresponding median market capitalization
and market-to-book ratio in the economy.

The calibration of the NUS-CRI PD models requires data on credit default events, which NUS-
CRI gathers from various international sources like Thomson Reuters Datastream and Bloomberg
Backoffice License.8 Due to limited credit default events in some economies with few listed firms
(Table 3, column 3), calibrating models for individual economies is not statistically meaningful.
Therefore, public companies worldwide are categorized into six calibration groups based on sim-
ilarities in economic development stage and primary exchange location: North America, Europe,
Asia-developed economies, Emerging Markets, China, and India.

Our study uses 1-year probabilities of default (PDs) sourced from the NUS-CRI Probability of
Default (NUS-CRI PD) database, which provides time series of PDs for more than 85,000 publicly
traded firms, both live and dead (delisted), in 134 countries. The 1-year NUS-CRI PDs are ap-
propriate for the calibration of the SKTL model, as the prediction accuracy of the NUS-CRI PD
model, measured as the area under the receiver operating characteristic (AUROC), is comparable
to that of other commercial PD providers (Table 3, last column).9 The SKTL model uses as sectoral
predictors the 20, 50 (median), and 80 percentile of the cross-sectional distribution of the Logit PD

8The credit events comprise Bankruptcy filing, receivership, administration, liquidation or any other legal impasse
to the timely settlement of interest and/or principal payments; A missed or delayed payment of interest and/or
principal, excluding delayed payments made within a grace period; Debt restructuring/distressed exchange, in which
debt holders are offered a new security or package or securities that result in a diminished financial obligation (e.g.
a conversion of debt to equity, debt with lower coupon or par amount, debt with lower seniority, debt with longer
maturity).

9The prediction performance is based on in-sample tests, using data until the end of the selected data sample and
then comparing the forecasts to actual defaults occuring during the forecasting horizon starting immediately after
the end point of the data sample.
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in each of the sectors considered in the analysis (Table 1, Panel E). To reduce the noise induced by
the PDs of individual firms, sectoral PDs are computed only for sectors with more than ten firms.

3.3 Orbis Bankruptcy Data

The SKTL model transfers a functional form, estimated for publicly traded firms, to privately
held firms. It is natural to ask whether this transfer might be undermined by a distribution shift
or inadequate representativeness of the data used in the model estimation. The quality of the
bankruptcy data in Orbis, while not adequate for evaluating predictive default models directly
as explained below, is nevertheless good enough to validate models calibrated using other data
sources, such as the SKTL model presented here. Below, we describe how the bankruptcy data is
constructed and explain in detail why the Orbis bankruptcy data should not be used to estimate a
default predictive model directly.

Orbis collects data on the status of the firms it covers. The six major status categories are:
Active, Bankruptcy, Dissolved, In liquidation, Inactive and Unknown. In some cases, status labels
like Active and Dissolved are followed by more detailed descriptions, e.g., Active (default of pay-
ment) and Dissolved (bankruptcy). Table 3, first column, shows the number of bankrupt firms,
defined as firms with status labels “Bankruptcy”, “Dissolved (bankruptcy)”, “Active (insolvency
proceedings)’, or“Active (default of payment)’ in our sample.

The Orbis bankruptcy data does not include the dates of bankruptcy or defaults. To create
the model validation dataset, we assume that a firm becomes bankrupt or default during the year
following its last observation in Orbis. To alleviate potential bias from firms that exit with “Active”
status, we discard the last observations of firms with “Active” status.

There are several reasons to use Orbis’ bankruptcy dataset only for validation purposes rather
than to estimate directly a default prediction model. First, the data quality in certain countries is
significantly scarce. For instance, in Brazil, out of 15,000 firms, only one bankruptcy is recorded,
while in China, with 880,000 firms, there are merely 38 recorded bankruptcies. To assess the
reliability of Orbis bankruptcy data, a comparison with NUS-CRI records of credit events among
publicly traded firms is conducted (refer to Table 3, columns 2 and 3). Across most countries,
Orbis documents fewer bankruptcies than NUS-CRI credit events among listed firms, indicating
substantial omissions in Orbis bankruptcy records.

Second, Orbis is inadequate for studying firm entries and exits, including bankruptcy, because
it is hard to tell if a firm has exited the market or simply left the dataset (Bajgar et al., 2020).
Notably, a significant portion of firms for which Orbis has ceased updating their data, regardless
of the reason for exiting, are still labeled as “Active”.

Third, the historical bankruptcy data within Orbis are incomplete as bankruptcy information is
deleted after five years of inactivity, resulting in a truncated data sample. Consequently, predictive
models utilizing these incomplete data as input fail to capture the sectoral and cyclical factors
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responsible for the observed pattern of clustered defaults in the real world (Das et al., 2007).

3.4 Macroeconomic Variables

Besides accounting ratios, domestic macroeconomic variables have proved useful for predicting
corporate defaults as in Carling et al. (2007), Duffie et al. (2007) and Koopman et al. (2012). We
include two macroeconomic variables, quarterly GDP growth and monthly interbank interest rates.
Quarterly GDP growth data are sourced from the World Economic Outlook database and interbank
interest rate data from the Federal Reserve Bank of Saint Louis FRED database. Since we focus
on real-time prediction of PDs, we assume that the quarterly GDP growth is published one month
after the quarter ends and that interbank interest rates are available at the end of each month.

4 From Public Firms’ PDs to Private Firms’ Financial Conditions

One of the contributions of this paper is to exploit the information embedded in the market-based
PDs of publicly traded firms, which is available at a high frequency, e.g. daily, weekly, and monthly,
to evaluate the PDs of privately held firms. The underlying intuition is simple: sectoral shocks
should affect the majority of firms in the sector regardless of whether they are privately held or
publicly traded. On the other hand, it is possible that publicly traded firms, with easier access
to equity financing and much larger size, may be so different from privately held firms that the
market-based information of the former is irrelevant for the latter.

One could test this empirical question by running a logit regression of privately-held firms’
credit incidents against lagged listed firms’ PD. However, this exercise is not feasible due to the
deficiency of Orbis bankruptcy data discussed in Sec. 3.3 so an indirect approach is required to assess
whether the PDs of publicly traded firms are informative enough about the financial conditions of
privately held firms. Specifically, we evaluate whether changes in selected financial conditions of
the latter can be explained by an intra-year predictive regression model that includes changes in the
sectoral PDs of publicly traded firms as covariates. The financial conditions selected are solvency,
profitability, and liquidity, which are proxied as shareholders’ fund-to-total assets ratio (solvency
ratio), net income-to-total assets ratio (return on assets), and current assets minus inventory to
current liability ratio, or current ratio (liquidity ratio).10

We estimate panel regressions with economy-sector fixed effects. Let ∆ycs,t denote the median
change in privately held firms’ financial ratio of year t relative to the previous year, within sector s

of economy c; let ∆PDcs,t+0.25k denotes the median change in publicly traded firms’ PD observed at
end of quarter k of year t+1, relative to the end of year t. To facilitate interpretation, ∆PDcs,t+0.25k

is scaled to unit variance within each combination of economy, sector, and quarter. At the end
of quarter k in year t + 1, we evaluate whether the latest sectoral PD available can forecast or

10The three financial ratios are similar to the ones used by Zmijewski (1984) and Shumway (2001).
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nowcast changes in end-of-year financial ratios of privately held firms in the sector. For each
quarter k ∈ {1, 2, 3, 4}, the panel regression is:

∆ycs,t+1 = αcsk + βk∆PDcs,t+0.25k + γk · controls + εcs,t+1|t+0.25k (t = 1, 2, ..., T ), (1)

where the control variables include country c’s real GDP growth rate, the average intra-bank interest
rates in years t and t+1, and the end-of-year sectoral PD and sectoral median of the financial ratio
in year t.

The panel regressions allow examining the sectoral-specific signals from publicly traded firms’
PDs after controlling for the cyclical information contained in the macroeconomic variables. Note
also that the macroeconomic variables, GDP growth, and interest rates, enjoy a forward-looking
advantage over the sectoral PDs since their current values, not available at the time of the prediction,
are included in the regression. For comparison, we also examine the ability of sectoral PDs of
publicly traded firms to predict changes in their financial conditions. To achieve this, we substitute
the dependent variable in equation (1) with the median changes of sectoral PDs of publicly traded
firms.

Table 4 presents estimates of the slope coefficients, βk, in equation (1). For each financial ratio,
the table reports the slope coefficients corresponding to the regression equations of the financial
ratios of the publicly traded firm and privately held firm financial ratios. To interpret the economic
significance of coefficients, we scaled the independent variables to unit variance at the country-
sectoral level. The coefficients can therefore be interpreted as the response to a one standard
deviation shock of sectoral PD.

The analysis uncovers several noteworthy patterns. First, a rise in the sectoral PD of publicly
traded firms predicts decreased solvency ratios, return on assets (ROA), and liquidity ratios of all
firms, regardless of their listing status. Second, the impact of sectoral PDs as information from
latter quarters is used, i.e. βk increases with k. For example, a one-standard-deviation shock to
end-of-year sectoral PD, k = 3, 4, would predict lower expectation of current-year nonlisted-firm
ROA by about 0.3 percent whereas the same shock for earlier quarters, k = 1, 2, would only lower
it by 0.2 percent. Third, the magnitudes of slope coefficients are generally higher among privately
held firms than publicly traded firms. This is in line with the fact that privately held firms, due to
their smaller size, are more susceptible to macroeconomic shocks as observed in Fama and French
(1993). The sectoral PDs of the listed firms, therefore, are informative for both groups of firms,
which validates the signal transfer approach of the SKTL model.

In summary, the sectoral PD of publicly traded firms contains useful and timely information
for monitoring privately held firms’ financial conditions, whose reaction to PD innovations is larger
than that of publicly traded firms. Including this high-frequency, real-time data in predictive
models could significantly improve their performance.
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5 SKTL: A Mixed-Frequency Gradient-Boosting Tree PD Model

The absence of reliable publicly available default and bankruptcy data for privately held firms
required earlier studies to use proprietary datasets. Drawing from the findings outlined in Section 4,
we implement a Signal-Knowledge Transfer Learning (SKTL) model. This model uses information
obtained from the PDs of publicly traded firms, addressing the issues posed by data scarcity.
In this section, we begin with a discussion of the model setup, followed by an overview of the
machine learning algorithm the model employs. Subsequently, we detail the steps involved in
model estimation and evaluation. Finally, we present our results.

5.1 Mixed-frequency Model Setup

A combination of mixed-frequency data is essential to monitor real-time financial conditions. Firms’
balance sheet data are typically published annually, sectoral PD and interest rates are available at
the end of each month, and GDP figures are released quarterly, with a one-month lag. We assume
privately held firms’ balance sheets are released three months after the closing date of each fiscal
year. The assumption mirrors the timeline an investor or market analyst might encounter when
seeking balance sheet data online.11

Before delving into the model, we introduce some notations. Let i denote firm index; s(i) denote
the sector that firm i belongs to; t denote the end of the month observed; l denote the number of
months that have passed since the release date of most recent annual balance sheet. Let Firmi,t−l,
Macrot and Sectorals(i),t denote the most recent set of firm features, macroeconomic variables,
and sectoral PD predictors available at time t, which are defined in Table 1. We adopt a modular
approach, consistent with that used in the NUS-CRI PD model, and calibrate models for each
group of economies consistent with the group specification in NUS-CRI PD.

We aim to generate end-of-month PD using the available predictors at that time. This implies
that the frequency of predictors is either equal to or lower than the target variable. Following
Foroni et al. (2018), the forecasting problem is formulated as:

Logit (PDit) = Fcl

(
Macrot, Sectorals(i),t, F irmi,t−l

)
+ εi,t|t−l. (2)

Hence, for each l in {0,1,2,...,11}, we have a different model Fcl to account for the degree of staleness
of the balance sheet data. As time elapses from the release date, balance sheets become outdated to
reflect the firm’s financial condition. The functional form of Fcl can account for the data staleness
by placing less weight on the balance sheet variables. To simplify the model estimation, Fcl only
accommodates the release frequency of balance sheets but not GDP growth. The latter aligns more
closely with the PD data, lagging only three months, thus mitigating the issue of staleness.

11Note, however, that Orbis might take one additional year to add and report the balance sheet data for these
firms. The case studies in Section 6 report results from models that assume a 15-month publication lag.
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The choice of the logit transformation of the PD as the target of Fcl ensures that the implied
PD, once the logit is reversed, falls in the [0, 1] interval. Another desirable feature is that it also
magnifies the sensitivity of the squared loss function for small values of the PD, which is consistent
with the fact PD ranges from one credit rating to the next are wider as the credit rating of a firm
deteriorates (Duan and Li, 2021). For example, the range of AA+ to AA- rating is 0.40 bps wide,
in contrast, the range of BB+ to BB- rating is 72 bps wide. On the other hand, when the Minimum
Squared Error (MSE) loss function is used, the logit transformation might exaggerate the economic
significance of errors when the target PD is too small, as the logit function tends to infinity. Since
Duan and Li (2021) suggest that the AAA rating corresponds to PD below 3.5 · 10−5, we truncate
the sample one-year PD by assigning 10−5 to all values below that threshold to minimize this
problem.

The remainder of this section explains the next steps in the implementation of the SKTL model.
First, the choice of the Gradient-Boosting Tree as the functional form for Fcl. Second, the training of
the model to predict the default probabilities of publicly traded firms using predictors also available
for privately held firms, namely balance sheet data, market-based sectoral PDs, and macroeconomic
indicators. Third, the evaluation of the model performance is conditional on the systemic credit
cycle and the time lags since the release of balance sheet data. Finally, the extension of the model
to predict the PDs of privately held firms, and its validation with the bankruptcy data from Orbis.

5.2 Gradient-boosting Tree and its Hyper-parameters

We use a gradient-boosting tree as the functional form of Fcl. Tree-based ensemble methods, i.e.,
ensemble methods that use regression trees or classification trees (Breiman et al., 1984; Sutton,
2005) as base or weak learners, are among the best algorithms for regression and classification on
tabular data (Grinsztajn et al., 2022). The Gradient Boosting (Friedman, 2001) algorithm is one
of the most popular tree-based ensemble methods and the one chosen as the functional form for
Fcl.

The fundamental idea in boosting is to train a series of base learners sequentially, where each
learner attempts to rectify the mistakes of those preceding it. Following Mungo et al. (2023), we
start with a dataset of n samples and m features D = {(xi, yi)} (|D| = n, xi ∈ Rm, yi ∈ R). A
mapping function yi = ϕ (xi) links inputs to the outputs. In Gradient Boosting, we aim to build
an approximation ϕK (xi), expressed as the cumulative sum of K functions,

ŷi = ϕK (xi) =
K∑

k=1
ρkfk, (3)

with fk = f (xi,θk) representing the ensemble’s base learners, parametrized by θk. The construc-
tion of ϕK seeks to minimize the expected value of a loss function L (yi, ŷi) and is built in K steps.
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Initially, we compute a constant approximation as

ϕ∗
0 = arg min

α

n∑
i=1

L (yi, α) . (4)

Subsequent models are formulated in a sequence,

ϕk = ϕk−1 + ρkfk, k = 1, . . . , K (5)

where ρk and fk minimize

{ρk, fk} = arg min
ρ,f

n∑
i=1

L (yi, ϕk−1 + ρf (xi,θ)) . (6)

In an ideal scenario, to solve the minimization problem in equation (6), we would choose fk as the
negative gradient of the loss function,

fk (xi) = −gk (xi) = −
[

∂L (yi, ϕ (xi))
∂ϕ (xi)

]
ϕ(xi)=ϕm−1(xi)

, (7)

and find the value of ρk with a line search,

ρk = arg min
ρ

n∑
i=1

L (yi, ϕk−1 (xi) + ρfk (xi)) . (8)

However, the condition set in equation (7) is not always feasible. Consequently, we employ the
learner fk (xi) = f (xi,θk), which most closely aligns with gk across the data distribution. This is
the solution to the problem

θk = arg min
β,θ

n∑
i=1

[−gk (xi) − ρkf (xi,θ)]2 . (9)

In tree-based models, the weak learners are regression trees. A tree consists of branches originating
from a common node, with each branch being a sequence of internal nodes culminating in a leaf.
The internal nodes contain decision-making criteria; starting at the tree’s root and following the
decision rules, each data point can be allocated to one of the leaves, or a set of scores can be
assigned to each leaf and later combined into a single prediction. The goal is to create a model
that predicts a target variable’s value by learning the correct decision rules inferred from the data
features. In this framework, optimizing the parameters in equation ((9)) involves determining the
ideal tree structure and leaf weights, a computationally intensive task. The conventional "greedy"
method requires evaluating every possible split point for each feature in the training set.

Recently, different algorithms and engineering solutions have been proposed to train gradient
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boosting models more efficiently (see, e.g., Tyree et al. (2011); Chen and Guestrin (2016); Ke
et al. (2017b)). Among these, LightGBM (Ke et al., 2017b) is notable for its focus on optimizing
training time, especially on large datasets. LightGBM introduces two techniques to train models
more efficiently. First, it trains the trees on a subset of the dataset by keeping the data points
(observations) associated with larger gradients and discarding the rest. Second, it bundles features
together to reduce the dimensionality of the data. LightGBM significantly outperforms the other
gradient-boosting implementations in terms of computational speed and memory consumption with
minor compromises on predictive performance (Bentéjac et al., 2021).

Tree-based methods tend to overfit the data. Several hyperparameters in the LightGBM
implementation guard against it. In the SKTL model, only a few of them are tuned while setting
the others at their default value. Below is the list of hyperparameters tuned to improve model
performance:

• The number of boosting rounds. We try to find the optimal number of base learners, K, as
defined in equation (3). Setting a lower K would reduce overfitting.

• The maximum depth of regression tree. The parameter restricted the maximum depth of base
learner f (x,θ). A lower maximum depth would restrict the complexity of the base learner
and reduce overfitting.

• The learning rate of base learners. The parameter shrinks each base learner ρkfk in equation
(3) towards zero by applying a shrinkage parameter before it. A lower learning rate, coupled
with more boosting rounds, would lead to a better fit of the model to the sample.

• Path smoothing. The parameter governs how each base learner tree generates outputs to
reduce overfitting in leaves with fewer samples. Under default value of zero, the output
is solely determined by the samples from each leaf. A positive path-smoothing parameter
indicates the tree outputs are the weighted average of the output of current leaf and outputs
of past nodes that lead to the leaf. The output of a leaf or node is defined as average sample
dependent variables in the leaf or node.

A grid search for different combinations of the hyper-parameters listed above yield those that
minimize the cross-validation MSE using data up to 2015. The design of training and validation
sets are described next.

5.3 Model Estimation and Evaluation

A distinct feature of our exercise relative to earlier panel forecasting studies is that the domain of
model application (privately held firms) is distinct from the domain of model estimation (publicly
traded firms). To evaluate the model’s performance more accurately, we design an out-of-sample
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evaluation exercise to avoid data leakage across firms. The testing set includes all observations post-
year Tthreshold. We divide the set of firms into M distinct groups. To generate PD for each group of
firms in the testing set, we estimate the model with observations in the other firm groups before or
equal to year Tthreshold, as demonstrated in Panel (a) of Figure 1. The out-of-sample performance is
therefore evaluated by pooling the model-generated PDs for observations after Tthreshold together.
For this exercise, we set M to 5, and Tthreshold to 2015.

One drawback of solely relying on the out-of-sample evaluation outlined above is that the testing
set only covers the later portion of the sample. This portion coincides with a period of relatively
little defaults across most economies. While this issue could be addressed by selecting a larger
testing set, doing so may result in large forecasting errors owing to the shorter training sample
used vis-a-vis those of models estimated using the whole sample.

The cross-validation method is employed for estimating the model performance during sample
periods before the out-of-sample testing set. The principle is to minimize the dependence of forecast
errors from the validation set and its corresponding training set. Similar to the design of training
and estimating sets in the out-of-sample exercise, firms are divided into M groups. We further
divide the sample period before Tthreshold into N blocks, each consisting of a consecutive period.
For each validation consisting of firms from group m observed in time block n, we apply the model
estimated from firms outside group m and periods outside block n, as shown in Panel (b) of Figure
1. Cross-sectional and serial dependency between the training and validation sets is avoided by
ensuring no observation overlaps in time and firms between both sets.

5.3.1 Model Performance among Publicly Traded Firms

The gradient-boosting tree model with all predictors in Table 1 is our “main model” or the SKTL
model. We compare its performance against two other models. The first is the prevailing mean
model (PM) which sets the PD forecast equal to the sample mean in the training set. The second
model, the benchmark model, is also a gradient-boosting tree model that includes all the predictors
in Table 1 except for the sectoral logit PD predictors. This model is estimated similarly to the main
model. Comparing the results of the main model with the benchmark model helps to evaluate the
contribution of the sectoral PDs to improve the PD prediction performance.

The R2 of model A relative to model B is used to compare the performance of the two models.
Let MSEA and MSEB denote the mean squared error of model A and model B respectively. The
R2 of model A against model B is defined as

R2
A/B = 1 − MSEA

MSEB
. (10)

Table 5 presents the R2 of the main model against the PM and benchmark models as well as

16



the benchmark model against the PM model.12 The left panel shows the cross-validation R2 for
observations with balance sheet data up to 2015; the right panel shows the out-of-sample R2

which includes observations with balance sheet data from 2016 onwards. The cross-validation R2

results for different economies show that the main model yields a cross-country median R2 of 55
percent against the PM model, above the benchmark model cross-country median R2 of 37 percent
against the PM model. The median R2 of the main model against the benchmark model is 30
percent, indicating a significant improvement from including higher frequency sectoral logit PD
as predictors. Applying the time-block t-test for panel data (Qu et al., 2023) to compare the
MSE difference of the main model and the benchmark model, we find the main model significantly
outperforms the benchmark model in all economies, with p-values (not shown here) below 0.01. In
the post-2015 period, the main model yields a cross-country median R2 of 57 percent against the
PM model, similar to its performance in data prior to 2015. The benchmark model’s performance
improves post-2015, yielding an R2 of 45 percent. The median R2 of the main model against
the benchmark model is at 18 percent, with economy-specific R2 positive and smaller but still
statistically significant.13 The smaller improvement of the main model on the benchmark model
can be attributed to the stability and low default rates observed in the period.

However, the outperformance of the main model should be more pronounced during periods
of rapid macroeconomic and financial changes, such as recessions or widespread financial distress,
owing to the timely information provided by sectoral PDs. Models relying solely on lagged balance
sheet data might not perform as well because past balance sheet data may not accurately capture
the most current conditions.

The idea can be illustrated by decomposing MSE into mean squared bias and mean squared
idiosyncratic errors at the sector level. Let eit,m denote the forecast error of model m regarding
the logit PD of firm i at time t; let ēst,m denote the average forecast errors of model m about all
firms in sector s observed at time t. The MSE of model m can be reformulated as the following:

MSEm =
∑N

i=1
∑T

t=1 e2
it,m

NT
=

∑N
i=1

∑T
t=1 ē2

s(i)t,m
NT

+
∑N

i=1
∑T

t=1(eit,m − ēs(i)t,m)2

NT
, (11)

where the first term, squared bias, captures the loss caused by the bias of forecasts at the sector
level, and the second term, squared idiosyncratic errors, captures the variance of forecast errors after
correcting for sector-level biases. Similarly, the MSE differentials of the main model relative to the
benchmark model can be decomposed into squared loss differentials and squared idiosyncratic error
differentials. Table 6 shows the loss differential decomposition, conditional on different credit risk
cycles as proxied by the average PD at each period.14 The values presented in Table 6 are divided

12Annex Table A.1 presents analogous result from models which assume 15-month publication lags. The assumption
is more consistent with the Orbis data.

13The individual economy-level test statistics are not shown here because all of them are statistically significant at
0.01 level.

14Annex Table A.2 presents analogous results for models assuming 15-month publication lags.
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by the MSE of the benchmark model to make them more interpretable. Negative values indicate
the main model outperforms the benchmark model. There are several interesting observations.
First, the main model’s improvement in squared idiosyncratic errors is small, with a cross-economy
median improvement of 3 to 4 percent of benchmark model MSE, regardless of the credit risk cycle.
Second, most of the main model’s improvement comes from reducing squared sectoral biases, which
is intuitive as the main model includes additional sectoral PD predictors. The outperformance is
more apparent during periods when the average PD deviates from the historical median: squared
bias differential contributes to 33 percent when the average PD is above the 75th percentile, 25
percent when the average PD is below the 25th percentile, and only 13 percent when average PD
is within the 25 and 75 percentile.

Timely PD prediction requires using balance sheet data available at the time of the prediction.
The data, published annually, could be lagging behind the prediction time by up to 12 months.15

Therefore, to assess the effect of data staleness on the PD prediction, we estimate twelve submodels,
each corresponding to a data release lag ranging from 0 to 11 months.16 Figure 2 shows the
distribution of MSE of the main model (blue line) and the benchmark model (red line) MSE across
different countries at each lag l ∈ {0, 1, . . . , 11}, scaled by the main model’s MSE at l = 0. 17

In the case of the main model, increasing data staleness, i.e. longer lags, impairs its predictive
performance. The MSE ratio for l = 11, an 11-month lag, is about 1.1. In other words, suppose
we want to estimate the PDs at the end of February 2023 and that balance sheet data are released
every March, three months after the end of the fiscal year. The latest available balance sheet data
corresponds to fiscal year 2021, published 11 months ago. If fiscal year 2022 data could be accessed
earlier, we would improve the current forecast of PD by 12 percent. This is the “value added” of
early data access. Similar patterns are observed in the performance of the benchmark model.

In summary, the results here show that our main model, a mixed frequency model that combines
different data like balance sheet and macroeconomic information along with sectoral PDs, performs
much better than benchmark models that ignore sectoral PDs. This difference is especially clear
when aggregate PD level deviates to the tail of sample distribution. Adding real-time sectoral PDs
gives us an advantage, as our main model using balance sheet data released eleven months earlier
still performs better than the benchmark model using current balance sheet data. This suggests
that sectoral PDs offer valuable forward-looking insights alongside the most recent balance sheet
data, reinforcing the findings in Section 4.

5.3.2 Model Performance among Privately Held Firms

Given the documented discrepancy in default risk between privately held and publicly traded firms
by Altman (2013), it’s pertinent to assess the SKTL model’s performance specifically within the

15See the discussion in Section 3.
16In equation (2), the lag corresponds to the variable l.
17Annex Figure A.1 presents analogous results from models assuming 15-month publication lags.
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domain of privately held firms to ensure its reliability. However, as outlined in Section 3.3, the
limitations in the Orbis data quality prevent us from directly estimating PD models tailored for
privately held firms. Consequently, we evaluate the efficacy of the model originally calibrated with
publicly traded firm data by using current end-of-year sectoral PDs in conjunction with privately
held firms’ balance sheet data to forecast default events affecting these entities one year in advance.

To justify the use of Orbis bankruptcy data for model evaluation, we examine the NUS-CRI
PD performance in predicting publicly traded firms’ credit events sourced from Orbis. If Orbis
bankruptcy records are not severely biased, the NUS-CRI PD should perform well on Orbis credit
events in the domain of listed firms. To alleviate potential bias from firms that exit with “Active”
status, we discard the last observations of firms with “Active” status. We compute the AUROC
of the end-of-year NUS-CRI PD applied to predict Orbis credit events in a one-year horizon. The
results are presented in the fourth column of Table 3. Except for a few economies with very few
credit events recorded by Orbis (potentially significant omissions), the NUS-CRI PD yields AUROC
above 0.8. The result gives us some assurance that, for most of the economies in our sample, Orbis
bankruptcy records can provide a reality check for our main model.

Figure 3 shows the ROC curves and their corresponding AUROC for each calibration group,
excluding the emerging markets model, for which only one bankruptcy event has been recorded.18

The results for China should also be viewed cautiously, as the recorded 38 bankruptcy events
are notably low compared to the large sample size of over 800,000 privately held firms. When
China results are omitted, AUROCs for the remaining groups range between 0.7 and 0.81. We
can conclude that the SKTL model, initially estimated using publicly traded firms’ data, can be
confidently extended to privately held firms.

5.4 Interpreting Model Forecasts

The SKTL model establishes a statistical relationship between sectoral PDs, macroeconomic vari-
ables, and balance sheet data to derive probabilities of default for individual firms. However, a
real-world application of the model requires understanding how the model comes to its conclusions.
Shapley values may assist in this interpretive process.

Shapley values were originally developed in the game theory literature as a way to divide fairly
a game’s outcome across a set of cooperative players based on their contribution to the outcome of
a game (Shapley, 1953). In statistical and machine learning models, they are used to evaluate the
contribution of the predictors, or features, to the outcome of a model.

To gain some intuition on Shapley values, let us consider the following example. Assume a set
of n players P = {1, . . . , n} cooperating in a game and a function ν (S) that, given a subset of
players S, computes the outcome of the game when played by the members of S. To compute the

18Annex Figure A.2 presents analogous results from models assuming a 15-month publication lag of balance sheet
data.
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contribution of a specific player i, one could compute the outcome ν (S−i) of the game for a generic
set S−i, i /∈ S−i, and compare it to the outcome ν {S−i ∪ {i}} of the game when i is present. The
Shapley value ϕi of player i will be the average difference ν (S−i ∪ {i}) − ν (S−i) computed over all
the possible sets S−i that do not include player i,

ϕi =
∑

S−i, {i}/∈S−i

|S−i|! (n − |S−i| − 1)
n! (ν (S−i ∪ {i}) − ν (S−i)) . (12)

In machine learning, evaluating the contribution of a feature requires computing the Shapley value
of a feature i as the average difference in the model’s outcome computed over all the possible sets
of features S−i that excludes i and the respective sets S−i ∪ {i}. A key strength of Shapley values,
compared to other methods to compute features’ importance, is that they can be estimated for each
observation in the dataset, thus allowing researchers to evaluate the contribution of a feature to
each point prediction the model made. Another useful property is that adding the Shapley values
of a group of features yields their combined effect on the prediction.19

We decompose the SKTL model predictions for privately held firms into the Shapley values of
the different features. Figures 4 and 5 shows the Shapley values of the top 15 predictors based on
their average contribution to the sample predictions, or average absolute Shapley values. Each dot
in the figures represents one observation, with the Shapley values plotted along the x-axis. The
color of the dots indicates the Shapley value of the features: red hues correspond to higher values,
while blue hues represent lower values. Among the balance sheet variables, those making the most
significant contributions, in descending order, are the solvency ratio, profit margin, earnings-to-
debt ratio, interest coverage ratio, and total assets. The sign of the Shapley values aligns with the
expectation that higher leverage, lower profitability, and liquidity contribute to higher PD values.
Across all country models, sectoral PD variables consistently rank among the top contributors. In
contrast, macroeconomic variables such as GDP growth and interest rates contribute much less,
suggesting that much of the macroeconomic information might be already captured by sectoral PD
predictors.

6 Case Studies

The following section delves into two case studies exemplifying potential applications of the SKTL
model as a real-time monitoring tool for assessing financial conditions in the corporate sector.
The initial case scrutinizes the German utility sector, while the subsequent case delves into the
UK commercial real estate sector. Comparative analyses are conducted, juxtaposing outcomes
obtained through applying the model to publicly traded firms and those resulting from employing

19However, there are two problems. First, for a given ML model, it is not possible to "exclude" a feature when
making a prediction. Second, the computation of all the possible sets S−i might be time-consuming. Nevertheless,
there are numerical strategies to compute the Shapley values efficiently (Lundberg and Lee, 2017).
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the benchmark model on privately held firms.

6.1 Case 1: Germany Utility Sector During 2022 Energy Crisis

In 2022, the Russia-Ukraine conflict led to an unprecedented crisis in Europe’s energy system, re-
sulting in the depletion of Russian gas supplies to the continent. Wholesale prices for electricity
and gas surged dramatically, escalating by as much as 15-fold above their early 2021 levels, causing
severe repercussions for households and businesses. Numerous utility companies encountered re-
strictions on their ability to pass on additional costs to clients. Consequently, governments swiftly
intervened to provide liquidity to energy firms to mitigate the crisis (Eckert and Buli, 2022).

For a thorough examination of the energy crisis’s impact on the utility sector, it’s essential to
encompass privately held firms. As of July 2023, there were 821 privately held firms, significantly
outnumbering the 13 publicly traded firms. Utilizing the SKTL model allows for real-time analysis
while accounting for the 15-month lag in Orbis’s publication of balance sheet data for most firms.

Figure 6 (a) illustrates the evolving dynamics of the privately held PD distribution within the
utility sector, juxtaposed with that of publicly traded firms (shaded area). Both distributions are
generated using the SKTL model, with sectoral PDs serving as the real-time predictor. Additionally,
the figure depicts the PD distribution of privately held firms derived from the benchmark model.

Notably, the PD distribution for privately held firms has exhibited a steady rise since early 2021,
experiencing a significant spike in September 2022 coinciding with the Nord Stream 2 gas pipeline
event, after which it has remained elevated. If real-time sectoral PD information is omitted, as in
the benchmark model, the PDs of privately held utilities would have remained stagnant until July
2022, with a gradual increase thereafter.

Incorporating privately held firms into the analysis offers deeper insights into the default risk
dynamics within the utility sector. Compared to publicly traded firms, the distribution of PDs for
privately held firms exhibits more dispersion particularly evident in the right tail of the distribution,
or tail risk. Notably, the top decile of the distribution, averaging around 45 basis points, indicates
that approximately one out of ten firms faced the risk of losing its BBB- rating and potentially
being downgraded to junk status. Municipal utilities and renewable energy firms were among the
most affected by this risk. Conversely, all publicly traded firms remained comfortably within the
investment-grade rating.20

The Shapley values help us spot the key factors driving higher default risk since 2019. To do
this with the real-time SKTL model, we compare the changes in median Shapley values across firms
between July 2023 and July 2019. We categorize predictors into groups like liquidity, profitability,
solvency, macroeconomic conditions (macro), and sectoral PD, as outlined in Table 1. Figure 6
(b) illustrates the changes in Shapley values for each group, highlighting a worsening of liquidity,
profitability, and solvency as the primary drivers behind the increased PDs. Sectoral PD variables,

20The mapping between the 1-year PD and credit ratings is based on Duan and Li (2021)
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which embed forward-looking information, play a major role, contributing 88 percent to the rise in
PDs, overshadowing contributions from other variables.

6.2 Case 2: UK Commercial Real Estate Sector

Falling prices and rising funding costs have put the commercial real estate sector under pressure
(Fioretti et al., 2023). We examine the financial condition of privately held commercial real estate
companies in the UK from a longer perspective, looking at their default risk dynamics since before
the Global Financial Crisis (GFC) in 2008.

As of July 2023, the data sample contains 507 UK privately held commercial real estate firms
with assets of at least 10 million USD.21 Figure 7 (a) shows the median logit PD of these firms,
estimated using the real-time SKTL model. In the aftermath of the GFC, the median PD was
trending downwards until it rose sharply during the Covid-19 pandemic. The sector’s median PD
have improved since then but have remained above their pre-pandemic levels, and July 2023 level
came close to those observed in 2007.

As in the previous case study, we group the predictors into liquidity, profitability, solvency,
macro, and sectoral PDs and find the changes in the Shapley values between July 2023 and July
2007. Figure 7 (b), which is analogous to Figure 6 (b), shows that macroeconomic conditions not
only contribute the most to default risk in the sector in 2023, but are relatively more important
than in July 2007. On the other hand, current balance sheets provide more liquidity, profitability,
and solvency buffers than during the pre-GFC period.

7 Conclusion

Transferring signals and knowledge from publicly traded firms can get us a long way in measuring
default risks of privately held firms while sidestepping the need for privately held firms’ default
events data. Model evaluation results indicate the SKTL model performs decently as an ordinal
measure of default risk, leading to AUROC which ranges between 0.7 and 0.8.

Including real-time sectoral PD significantly improves SKTL performance relative to the bench-
mark model that only relies on balance sheets and macroeconomic variables. As expected, the
improvement from real-time sectoral PD concentrates during recessions and periods when systemic
default probability is more volatile. The inclusion of real-time sectoral PD buys us time in the
sense that the MSE of the SKTL eleven months after the release of balance sheets is still lower
than the MSE of the benchmark model in the release months, which highlights sectoral PD contains
forward-looking information in addition to the most recent balance sheet data.

21The commercial real estate firms are identified by Nace Rev.2 code 6820, and include firms that rent and operate
either owned or leased real estate. The minimum asset threshold eliminates firms that do not own real estate and
only provide management services.
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We further evaluate the model’s performance in two real-time case studies, the financial condi-
tion of the German utility sector during the recent energy crisis and the recent financial condition
of the UK’s commercial real estate sector in comparison to 2007. The SKTL model greatly expands
the coverage of tail risks and quickly responds to macroeconomic events, e.g., the PD of German
utility firms jumped in the month of Nord Stream 2 pipeline explosion and remained elevated
afterward.

One proviso for SKTL is that the economy needs to have a relatively large and broad stock
market, such that the sectoral PD of listed firms can effectively proxy for shocks affecting the
whole sector in general. The constraint can be alleviated by pooling together similar economies.
One promising direction for future research is to harness the balance sheet information of publicly
traded firms that are more frequently updated to nowcast the balance sheets of privately held firms
and inform about their financial condition.
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Table 1: List of predictors

Panel A: Liquidity
Label Definition or transformation
Acid test Cash and cash equivalent / Current liabilities
Cash to operating revenue ratio Cash flow / Operating revenue turnover
Current ratio Current assets / Current liabilities
Debt-to-suppliers to operating revenue ratio Debt to suppliers / Operating revenue
Interest coverage ratio Operating profit / Interest paid
Liquidity ratio (Current assets - inventory) / Current Liabilities
Tangible fixed assets to debt ratio Tangible fixed assets / (Current liability + Noncurrent liability)
Trade receivables to operating revenue ratio Trade receivables / Operating revenue
Working capital (Current assets - Current liabilities) / Total assets

Panel B: Profitability and activity
Asset turnover Operating revenue / Total assets
Gross profit margin (Operating revenue - Costs of goods sold) / Operating revenue
Profit margin (earnings before tax based) Earnings before tax / Operating revenue
Profit margin (net income based) Net income / Operating revenue
ROA (earnings after tax based) Earnings after tax / Total assets
ROA (earnings before tax based) Earnings before tax / Total assets
ROA (EBIT based) EBIT / Total assets
ROA (EBITDA based) EBITDA / Total assets
ROA (net income based) Net income / Total assets
ROCE using net income (Net income + Interest paid) / (Shareholders’ funds + Non current liabil-

ities)
ROCE using profit before tax (Profit before tax + Interest paid) / (Shareholders’ funds + Non current

liabilities)
ROE using net income Net income / Shareholders’ funds
Stock turnover Operating revenue / Inventory

Panel C: Solvency
Earnings to debt ratio EBIT / (Current liabilities + Noncurrent liabilities)
Gearing ratio (Noncurrent liabilities+Loans) / Shareholders’ funds
Shareholders liquidity ratio Shareholders’ funds / Noncurrent liabilities
Solvency ratio (asset based) Shreholders’ funds / Total assets
Solvency ratio (liability based) Shreholders’ funds / (Non current liabilities+Current liabilities)

Panel D: Other firm characteristics
Industry sector NACE Rev. 2 main section
Number of employee
Total assets in constant price In 2015 USD

Panel E: PD and macro economic variables
Inter-bank overnight rates End-of-month values
Real quarterly GDP growth
Sectoral 20 percentile of logit PD End-of-month values
Sectoral 80 percentile of logit PD End-of-month values
Sectoral median of logit PD End-of-month values
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Table 2: Summary statistics

Number of firms1 Aggregate total asset2 Total asset3 Solvency Ratio4 Return on Assets5 Liquidity Ratio6

Start End Listed Non-listed Listed Non-listed Listed Non-listed Listed Non-listed Listed Non-listed Listed Non-listed
BR 1995 2023 405 14,651 840 512 656.59 23.37 0.39 0.51 3.18 3.43 1.14 1.26
CN 1995 2023 2,576 731,608 9,251 2,567 322.15 4.57 0.53 0.39 3.87 1.50 1.08 0.90
DE 1995 2023 1,155 102,087 4,118 3,680 120.56 12.79 0.41 0.29 2.25 2.95 1.24 1.25
ES 1995 2023 297 406,899 1,072 2,829 380.35 2.65 0.38 0.40 2.69 1.41 0.95 1.04
FR 1995 2023 1,078 395,692 4,164 4,912 100.13 2.51 0.40 0.34 2.63 3.76 1.10 1.08
GB 1995 2023 2,918 209,814 4,371 12,079 88.63 9.02 0.53 0.37 1.99 3.09 1.16 1.12
HK 1995 2023 219 1,210 2,161 3,399 608.06 246.74 0.62 0.55 3.34 3.80 1.42 1.50
IN 1995 2023 4,027 91,595 1,604 2,236 21.03 5.22 0.44 0.35 1.98 0.91 1.16 0.99
IT 1995 2023 511 565,962 1,078 4,389 200.02 2.84 0.33 0.19 1.87 0.52 0.99 0.89
JP 1995 2023 5,006 191,487 9,255 3,522 245.63 4.88 0.49 0.30 2.54 1.50 1.33 1.42
KR 1995 2023 2,934 348,991 3,338 2,826 71.92 3.05 0.50 0.37 2.66 3.59 1.11 1.27
MY 1995 2023 1,106 79,106 482 920 83.12 2.84 0.59 0.30 2.81 2.21 1.36 1.22
NL 1995 2023 310 16,843 1,092 1,624 405.67 34.01 0.41 0.34 3.58 3.93 0.99 1.06
PH 1995 2023 222 16,127 388 270 108.36 3.93 0.57 0.35 2.79 1.62 1.32 1.00
PL 1995 2023 673 67,951 230 856 30.89 4.08 0.50 0.44 3.29 3.33 0.97 0.99
RU 1995 2023 206 273,631 1,264 2,135 775.25 2.86 0.51 0.19 3.72 1.26 0.92 0.94
SG 1995 2023 852 32,765 793 1,642 96.24 8.28 0.55 0.37 3.14 2.41 1.33 1.24
TH 1995 2023 687 81,338 609 1,096 74.97 3.23 0.52 0.38 4.32 1.61 0.96 0.99
US 1995 2023 8,819 3,240 23,753 1,548 243.66 26.10 0.48 0.38 1.53 -4.06 1.41 1.06
VN 2001 2023 691 107,805 118 1,047 20.65 2.67 0.48 0.32 4.39 0.12 0.96 0.86
1 We focus on observations with total assets above 1 million USD and with data available on total assets, sharholders’ funds, current liabilities,

noncurrent liabilities, operating revenue and net income.
2 Aggregate total asset of fiscal year 2021 in billion of USD.
3 Median total asset in million of USD.
4 Median shareholders’ fund to total assets ratio.
5 Median net income to total assets ratio (%).
6 Median current asset minus inventory to current liability ratio.
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Table 3: Orbis bankruptcy events and NUS-CRI credit events

Orbis events CRI events CRI-PD AUROC1

Nonlisted firms Listed firms Listed firms Orbis events CRI events
BR 1 1 46 0.94 0.87
CN 38 0 986 0.83
DE 478 25 175 0.84 0.87
ES 4303 2 20 0.59 0.76
FR 22369 40 57 0.85 0.87
GB 844 14 154 0.79 0.89
HK 1 0 98 0.82
IN 683 21 1453 0.96 0.86
IT 60784 26 27 0.90 0.89
JP 377 11 215 0.94 0.93
KR 5 64 239 0.61 0.90
MY 0 0 237 0.86
NL 344 14 39 0.81 0.88
PH 0 0 41 0.84
PL 1342 2 61 0.97 0.88
RU 4976 0 25 0.66
SG 613 9 61 0.86 0.87
TH 0 1 127 0.78 0.91
US 59 85 1420 0.86 0.93
VN 1 0 2
1 The AUROC of CRI PD when applied to predict CRI credit events or Orbis firms’ exits in

the next twelve months

Table 4: Intra-year prediction regression of sectoral financial ratios against sectoral PD

Solvency ratio1 Return on assets2 Liquidity ratio3

Month Listed Non-listed Listed Non-listed Listed Non-listed
March −0.02 −0.07 −0.11 −0.17∗∗ 0.11 0.40∗∗∗

(0.04) (0.05) (0.05) (0.07) (0.09) (0.15)
June −0.06 −0.18∗∗∗ −0.15∗∗ −0.22∗∗∗ −0.25 −0.14

(0.05) (0.05) (0.06) (0.06) (0.17) (0.16)
September −0.11∗∗∗ −0.29∗∗∗ −0.24∗∗ −0.37∗∗∗ −0.39∗∗∗ −0.55∗∗∗

(0.03) (0.04) (0.10) (0.07) (0.13) (0.17)
December −0.17∗∗∗ −0.28∗∗∗ −0.27∗∗∗ −0.33∗∗∗ −0.58∗∗∗ −0.63∗∗∗

(0.05) (0.04) (0.10) (0.06) (0.16) (0.17)
Each regression includes 5044 country-sector-year observations. The standard errors are derived from clustered
covariance matrix. ∗ indicates pvalues between 5 percent and 10 percent; ∗∗ indicates pvalues between 1 percent
and 5 percent; ∗∗∗ indicates pvalues below 1 percent.

1 Shareholders’ funds to total assets ratio (%)
2 Net income to total assets ratio (%)
3 Current asset minus inventory to current liability ratio (%)
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Table 5: R2 of Logit PD, assuming balance sheets are published 3 months after closing dates

Cross-validation (Year ≤ 2015) Out of sample (Year > 2015)
Main
PM

Benchmark
PM

Main
Benchmark

Main
PM

Benchmark
PM

Main
Benchmark

Median 0.55 0.37 0.30 0.57 0.45 0.18
BR 0.60 0.47 0.25 0.63 0.55 0.19
CN 0.79 0.62 0.45 0.64 0.59 0.11
DE 0.46 0.28 0.25 0.46 0.41 0.08
ES 0.55 0.32 0.34 0.62 0.55 0.15
FR 0.53 0.32 0.31 0.49 0.45 0.09
GB 0.44 0.28 0.22 0.47 0.42 0.09
HK 0.59 0.45 0.25 0.58 0.50 0.14
IN 0.54 0.37 0.27 0.55 0.43 0.21
IT 0.54 0.31 0.33 0.51 0.45 0.11
JP 0.66 0.50 0.32 0.73 0.68 0.17
KR 0.69 0.57 0.27 0.56 0.43 0.23
MY 0.66 0.56 0.22 0.58 0.52 0.13
NL 0.53 0.25 0.38 0.53 0.34 0.29
PH 0.62 0.44 0.32 0.57 0.44 0.23
PL 0.52 0.28 0.33 0.59 0.26 0.44
RU 0.43 -0.10 0.48 0.53 0.21 0.40
SG 0.54 0.37 0.27 0.55 0.47 0.14
TH 0.66 0.49 0.34 0.70 0.47 0.44
US 0.55 0.37 0.29 0.51 0.39 0.19
VN 0.67 0.54 0.28 0.64 0.54 0.20
R2 of Model A over Model B is defined as R2

A/B = 1 − MSEA/MSEB . Model “PM” denotes
prevailing mean model where the forecasts are sample mean in the training sets.
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Table 6: Loss differential decomposition of predicting Logit PD, conditional level of average PD

¯PDt ≤ qt25 qt25 ≤ ¯PDt ≤ qt75 ¯PDt ≥ qt75

Squared
bias

Squared
idiosyncratic

loss

Squared
bias

Squared
idiosyncratic

loss

Squared
bias

Squared
idiosyncratic

loss
Median -0.25 -0.03 -0.13 -0.04 -0.33 -0.04
BR -0.22 -0.04 -0.13 -0.06 -0.28 -0.06
CN -0.17 -0.16 -0.18 -0.13 -0.31 -0.18
DE -0.12 -0.02 -0.12 -0.03 -0.35 -0.03
ES -0.28 -0.02 -0.21 -0.03 -0.34 -0.02
FR -0.29 -0.03 -0.10 -0.02 -0.46 -0.03
GB -0.32 -0.04 -0.13 -0.03 -0.14 -0.03
HK -0.17 -0.03 -0.14 -0.06 -0.18 -0.09
IN -0.06 -0.16 -0.03 -0.15 -0.04 -0.31
IT -0.22 -0.05 -0.23 -0.07 -0.20 -0.06
JP -0.25 -0.03 -0.18 -0.05 -0.42 -0.04
KR -0.33 -0.02 -0.13 -0.03 -0.47 -0.03
MY -0.25 0.00 -0.07 -0.03 -0.32 -0.05
NL -0.49 -0.02 -0.17 -0.03 -0.49 -0.03
PH -0.43 -0.03 -0.13 -0.04 -0.37 -0.01
PL -0.12 -0.11 -0.28 -0.05 -0.52 -0.07
RU -0.15 -0.09 -0.34 -0.10 -0.57 -0.13
SG -0.23 -0.06 -0.11 -0.05 -0.32 -0.04
TH -0.43 -0.02 -0.29 -0.03 -0.44 -0.07
US -0.39 -0.05 -0.11 -0.03 -0.30 -0.04
VN -0.47 -0.07 -0.13 -0.04 -0.25 -0.02

The table shows the decomposition of loss differentials between the main model and the benchmark
model, conditional levels of cross-sectional average PD. The loss differential is decomposed into
squared bias differentials within each sector, and the corresponding squared idiosyncratic error
differentials. The sample are divided into three groups, periods when average PD is below the 0.25
quantile (left panel), periods when average PD is above the 0.75 quantile (right panel) and the other
periods (middle panel).
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Figure 1: Training, validation and testing sets in cross-validation and out-of-sample examination
of model performance
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Figure 2: MSE of main and benchmark model at different lags since publication of annual reports
For each country, the MSE at different lags are divided by the zero-lag MSE. The figure shows median, 0.2 and 0.8
quantiles of MSE distribution across countries.
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Figure 3: AUC of predicting non-listed firm bankruptcy

(a) Advanced Asia (b) Europe

(c) CN (d) IN

(e) US
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Figure 4: Distribution of Shapley values of main models applied to privately held firms
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Figure 5: Distribution of Shapley values of main models applied to privately held firms (continued)
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Figure 6: Case study 1: German gas and electricity firms during the post-covid energy crisis

(a) PD of German gas and electricity firms
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Figure 7: Case study 2: UK commercial real estate firms

(a) Logit PD of UK privately held commercial real estate firms
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Table A.1: R2 of Logit PD (%), assuming balance sheets are published 15 months after closing
dates

Cross-validation (Year ≤ 2015) Out of sample (Year > 2015)
Main
PM

Benchmark
PM

Main
Benchmark

Main
PM

Benchmark
PM

Main
Benchmark

Median 0.51 0.35 0.29 0.51 0.41 0.15
BR 0.53 0.38 0.25 0.58 0.47 0.21
CN 0.72 0.52 0.42 0.51 0.45 0.12
DE 0.41 0.22 0.24 0.37 0.28 0.13
ES 0.51 0.26 0.34 0.60 0.54 0.14
FR 0.48 0.24 0.32 0.44 0.35 0.14
GB 0.35 0.18 0.21 0.39 0.32 0.12
HK 0.55 0.42 0.22 0.49 0.43 0.10
IN 0.50 0.45 0.09 0.52 0.49 0.05
IT 0.47 0.19 0.34 0.41 0.32 0.13
JP 0.66 0.51 0.32 0.67 0.63 0.11
KR 0.64 0.51 0.27 0.45 0.35 0.16
MY 0.60 0.53 0.16 0.54 0.47 0.12
NL 0.47 0.21 0.33 0.48 0.32 0.25
PH 0.59 0.38 0.33 0.50 0.40 0.17
PL 0.44 0.21 0.29 0.54 0.16 0.45
RU 0.42 0.02 0.41 0.47 0.20 0.34
SG 0.51 0.33 0.26 0.52 0.42 0.18
TH 0.61 0.44 0.31 0.66 0.46 0.36
US 0.48 0.26 0.29 0.41 0.27 0.20
VN 0.58 0.44 0.25 0.59 0.47 0.22
R2 of Model A over Model B is defined as R2

A/B = 1 − MSEA/MSEB . Model “PM” denotes
prevailing mean model where the forecasts are sample mean in the training sets.
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Table A.2: Loss differential decomposition, conditional level of average PD (15 months publication
lag)

¯PDt ≤ qt25 qt25 ≤ ¯PDt ≤ qt75 ¯PDt ≥ qt75

Squared
bias

Squared
idiosyncratic

loss

Squared
bias

Squared
idiosyncratic

loss

Squared
bias

Squared
idiosyncratic

loss
Median -0.26 -0.04 -0.14 -0.03 -0.322 -0.04
BR -0.16 -0.08 -0.12 -0.07 -0.32 -0.10
CN -0.22 -0.16 -0.12 -0.11 -0.55 -0.12
DE -0.25 -0.04 -0.10 -0.02 -0.31 -0.03
ES -0.27 -0.02 -0.25 -0.03 -0.30 -0.03
FR -0.34 -0.04 -0.15 -0.03 -0.41 -0.03
GB -0.29 -0.04 -0.14 -0.02 -0.13 -0.03
HK -0.22 -0.01 -0.12 -0.03 -0.17 -0.06
IN -0.06 -0.01 -0.05 -0.03 -0.03 -0.03
IT -0.31 -0.06 -0.23 -0.05 -0.20 -0.04
JP -0.21 -0.03 -0.18 -0.06 -0.44 -0.05
KR -0.31 -0.01 -0.13 -0.03 -0.31 -0.05
MY -0.13 -0.01 -0.08 -0.03 -0.22 -0.06
NL -0.40 -0.03 -0.15 -0.02 -0.44 -0.03
PH -0.40 -0.04 -0.15 -0.04 -0.37 -0.03
PL -0.15 -0.08 -0.25 -0.03 -0.51 -0.06
RU -0.09 -0.05 -0.32 -0.07 -0.49 -0.08
SG -0.16 -0.08 -0.11 -0.08 -0.34 -0.04
TH -0.40 -0.02 -0.20 -0.03 -0.39 -0.10
US -0.33 -0.05 -0.13 -0.05 -0.33 -0.03
VN -0.41 -0.07 -0.11 -0.05 -0.28 -0.03

The table shows the decomposition of loss differentials between the main model and the benchmark
model, conditional levels of cross-sectional average PD. The loss differential is decomposed into
squared bias differentials within each sector, and the corresponding squared idiosyncratic error
differentials. The sample are divided into three groups, periods when average PD is below the 0.25
quantile (left panel), periods when average PD is above the 0.75 quantile (right panel) and the other
periods (middle panel).
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Figure A.1: MSE of Main and Benchmark Model at Different Lags since Publication of Annual
Reports
For each country, the MSE at different lags are divided by the zero-lag MSE. The figure shows median, 0.2 and 0.8
quantiles of MSE distribution across countries.

(a) Data released 15 months after closing dates
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Figure A.2: AUC of predicting non-listed firm bankruptcy (15 month publication lag)

(a) Advanced Asia (b) Europe

(c) CN (d) IN

(e) US
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