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Abstract 

 

 

Growing involvement of the traditional banking system with the crypto ecosystem raises 

concerns about systemic risk and financial stability. The “Crypto Winter” of 2022 and 2023 

showed that the crypto ecosystem was susceptible to liquidity risk and runs. The paper 

finds, using time-varying vector autoregressions and long-short term memory multipliers, 

weak connectedness between cryptocurrencies and globally systemically important banks. 

The absence of strong linkages suggests limited scope for spillover risks and gives 

authorities room to strengthen and enhance macroprudential management of crypto 

ecosystem risks. 
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I. Introduction

The crypto ecosystem, which comprises cryptocurrencies, crypto platforms, stablecoins, and smart con-
tracts, has grown rapidly since its inception in 2009. Recent Bank for International Settlements (BIS)
estimates put the ecosystem market capitalization at approximately USD 1 trillion (BIS 2023). Market
practitioners and policy makers generally agree that the rapid growth of the crypto ecosystem could
bring about significant transformations of the financial system. The crypto ecosystem holds the promise
of improving the efficiency of the financial system by reducing transaction costs, streamlining settlement
and record keeping processes, decentralizing financial transactions, and deepening financial inclusion.
However, there are serious concerns that the realization of risks in the crypto ecosystem could spill over
to the traditional financial system. These risks are related to structural flaws in the ecosystem, such as
fragmentation and congestion of validation processes, that make it vulnerable to manipulation and runs
(IMF 2022, BIS 2023).

Despite being promoted as more robust than the traditional financial system, the crypto ecosystem is
similarly fragile and vulnerable to liquidity risk. Rather than becoming a trustless and decentralized
financial system (Harvey and others 2021), its evolution has closely mirrored that of the traditional bank-
ing and financial system. In 2022 and early 2023, the crypto ecosystem was rocked by the large failures
of several stablecoins and crypto firms, a period known as the Crypto Winter. These adverse events
demonstrated the potential for idiosyncratic shocks to spread widely within the crypto universe. A key
mechanism underlying the propagation and amplification of the shocks was the substantial vulnerability
of cryptocurrencies and platforms to runs. Similar to traditional banks, crypto firms borrow short and
lend long, which exposes them to liquidity risk. The absence of a crypto lender of last resort makes the
crypto ecosystem highly vulnerable to changes in investor sentiment (Brainard 2022; Gorton and Zhang
2023; Arner and others 2023; Liu, Makarov, and Schoar 2023).

Systemic risk in the crypto ecosystem seems self-contained but it might change as integration with the
traditional financial system continues. The Crypto Winter failures, which caught a lot of attention in
the press, did not have major repercussions outside the crypto ecosystem. However, there is ongoing
integration between the crypto ecosystem and the traditional financial system. Crypto firms are expand-
ing into lending and borrowing services traditionally offered by banks. Banks are gradually increasing
their cryptocurrency holdings driven by growing demand from their clients. While banks’ involvement is
modest at present, it could scale up rapidly (Auer and others 2022). Money laundering and and financial
malfeasance might exacerbate potential systemic risks (Makarov and Schoar 2022).

Moreover, limited understanding of the linkages and connections between the crypto ecosystem and the
financial system could impair proper macroprudential management of crypto risks. Connections between
the two systems could evolve rapidly, mirroring mainly innovations and technological developments in
the former. In the absence of a clear picture of where the sources of risk are and what firms or markets
they affect, it is difficult if not impossible to assess nascent threats, identify systemically important firms,
review and broaden the perimeter of regulation, and design and implement adequate regulatory and
supervisory frameworks.

This study aims to assess how connected the crypto space and the traditional banking sector are. It
focuses on analyzing the linkages between two major cryptocurrencies, Bitcoin and Ethereum, and glob-
ally systemically important banks (GSIBs). We assess the dynamic connectedness between cryptocurren-
cies and banks using two complementary methods: the Time-Varying Parameter Vector Autoregression
(VAR) (TVP-VAR) variance-decomposition method of Antonakakis and others (2020) and the Long
Short-Term Memory (LSTM) multiplier. Both methods measure statistical connectedness and do not
necessarily imply economic causality. Nevertheless, they can highlight structural issues that are reflected
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in the comovements of market prices.

In the TVP-VAR variance-decomposition method, as in the extant papers of Diebold and Yilmaz (2012,
2014), the directional connectedness or risk spillover of a variable is measured as its contribution to
the generalized forecast error variance decomposition of the other variables in the VAR system. In
other words, the TVP-VAR connectedness measure is a variance-based connectedness or second moment
measure. By allowing parameters to vary over time it is possible to model the changing nature of risk
spillovers and to capture, to a certain extent, the nonlinear dependence between the system variables.

Spillover and connectedness analysis should also focus on the first moment spillovers, that is connect-
edness related to the future predicted values of the variables in the system. To this end, this paper
introduces the LSTM multiplier method as a first moment connectedness measure. After fitting a LSTM
model to the data, the connectedness of the transmitter variable, the source of the shocks, is measured
as the difference between the predicted values of the other variables under two conditions: when a shock
affects the source variable and in the absence of the shock. Conceptually, the method resembles the im-
pulse response analysis of VAR models and focuses on the response of variables to shocks rather than on
the second moments of the model forecasts. By design, the LSTM model captures nonlinear dependence
better than a TVP-VAR at the expense of reduced explainability, which in the context of connectedness
analysis, is not a major shortcoming. The application of both methods makes possible to measure first
and second moment connectedness.

Connectedness measures were computed for cryptocurrencies price returns and the equity returns of
GSIBs employing both methods. Irrespective of the method, the results show that, in general, cryp-
tocurrencies were only weakly connected to GSIBs and had a limited impact on the equity returns
of the latter. Rather, GSIBs, as a sector, had a larger impact on cryptocurrency returns. Periods
during which variance-based connectedness from cryptocurrencies to GSIBs peaked, albeit remaining
significantly small, tended to coincide with periods of high market distress and volatility, such as the
months preceding Brexit, the start of the Covid-19 pandemic in early 2020, and the early stages of the
Russia-Ukraine war in 2022.

The results indicate that cryptocurrencies have not yet reached the stage where they pose significant
risks to financial system. Given that past trends cannot predict future outcomes reliably, concerns raised
by academics and policy institutions closely monitoring cryptocurrencies and digital finance should not
be ignored. The limited connection between the crypto ecosystem and traditional banking systems offers
authorities a chance to enhance and update regulatory and supervisory frameworks. This way, they can
effectively handle potential risks arising from the ongoing integration of crypto and traditional financial
systems.

The following sections of this paper provide a concise review of the relevant literature (section II), a
description of the data (section III) followed by an overview of the different connectedness approaches
used (section IV). Afterwards, the paper analyzes the results (section V) and finally, draws the conclusions
from the findings (section VI).

II. Related literature

Crypto assets, including cryptocurrencies, have failed to fulfill their early promise to address weaknesses
in traditional finance. During 2022 and 2023, major players in the crypto space failed spectacularly
leading to the collapse of several crypto assets and supporting platforms. Arner and others (2023)
attributed these failures to the financialization of the crypto system, which has brought about several
of the problems typically associated with traditional finance such as conflict of interests, information
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asymmetries, centralization and interconnection, and agency and operational risks.

Gorton and Zhang (2023) remarked that, despite the hype, crypto lending platforms are not much
different than traditional banking: the business model of the platforms is to borrow short and to lend
long. Hence, as banks, crypto platforms are highly exposed to liquidity risk and vulnerable to runs, risks
that are exacerbated in the absence of a crypto lender of last resort.

The risk of runs on cryptocurrencies and crypto platforms materialized during the Crypto Winter of
2022-23. As documented by Liu, Makarov and Schoar (2023), some of the runs were precipitated by
concerns about the viability of the affected cryptocurrencies and platforms. The Crypto Winter raised
concerns that shocks in the crypto system might disrupt the traditional financial system. Connections
between these systems have been growing as traditional financial firms increase their exposure to crypto
assets, driven partly by growing demand for crypto asset investing by high net worth individuals and
institutional investors (Choi 2023).

Despite growing interest in crypto, banks and other institutional investors seem to have behaved cau-
tiously. Auer and others (2022) found that major banks currently maintain relatively low levels of
exposure to cryptocurrencies. Exposures were higher for banks headquartered in countries with greater
innovation capacity. However, retail and institutional investors conducted operations mainly in the
“shadow crypto financial system” of lightly regulated crypto exchanges.

Research on the connections between various crypto assets among themselves or other assets is rapidly
accumulating so the review is restricted to a limited set of studies that employ similar methodologies
to ours or present results relevant to this study. Several of these studies use variations of the Diebold
and Yilmaz (2012, 2014) methodology. In the original Diebold-Yilmaz method, the connectedness of
a variable is proportional to its contribution to the variance decomposition of the forecast errors of
other variables in a VAR system. This method has been extended to use models other than VAR, such
as FAVAR, LASSO, DCC-GARCH, QVAR, and GVAR among others (Gabauer and others 2023). In
particular, Antonakakis and others (2020) introduced a generalized approach using a TVP-VAR. The
TVP-VAR method offers a more accurate estimation of time-varying coefficients, improved robustness
against outliers, and eliminates the need for rolling window sizes used in the original Diebold-Yilmaz
framework.

A large number of studies focused exclusively on connectedness among major cryptocurrencies. For in-
stance, Antonakakis and others (2019) examined contagion between cryptocurrencies during 2015-18 us-
ing a TVP-FAVAR connectedness approach and found that cryptocurrencies connectedness is stronger in
periods of increased market uncertainty and highly volatile prices. Zieba, Kokoszczynski, and Sledziewska
(2019) looked at the interdependencies among 78 cryptocurrencies during 2015-18. The minimum span-
ning tree method was used to assign cryptocurrencies to separate clusters. Once the clusters were
identified, separate VAR models were fitted to each of them. Granger causality tests and impulse re-
sponse functions served to identify the dominant sources of shocks. Contrary to other studies, their
results showed that Bitcoin did not have a major impact on other cryptocurrencies.

Hasan and others (2022), using price return data and trading volume data, analyzed liquidity connect-
edness among the six major cryptocurrencies by first applying the Diebold-Yilmaz method to obtain the
variance decomposition, and then decomposing it into low and high frequency components as suggested
by Barunik and Krehlik (2018). Liquidity connectedness was stronger in the short run than in other
frequencies and Bitcoin played a major role as a source of spillovers. Using a similar empirical framework,
Kumar and others (2022) found that return and volatility connenctedness among cryptocurrencies, as
well as with other asset classes, increased during the COVID-19 period. Cui and Maghyereh (2022),
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using intraday price data, analyzed higher moment connectedness among cryptocurrencies both in the
time and frequency domains using the TVP-VAR approach and the Barunik and Krehlik methods re-
spectively. Thety found that variance connectedness was stronger than that of other moments, especially
at lower frequencies.

Several studies examined linkages between cryptocurrencies and other assets. Among them, Apostolakis
(2023) studied the volatility transmission between spot price of Bitcoin and its price in futures markets
using diverse techniques, including the standard Diebold-Yilmaz methodology. His findings suggest
that the Bitcoin spot market was the dominant transmitter of volatility shocks to the futures markets.
Within a GARCH framework, Nur and Korkmaz (2022) noted that there were minimal volatility spillovers
between Bitcoin and the Saint Louis Fed financial stress index, a widely monitored measure of aggregate
financial sector risk. This result suggests the financial system and cryptocurrencies were disconnected
during the study period, which covered the years 2011 to 2021. Zhang and others (2022), applying
the Diebold-Yilmaz time domain and Barunik-Krehlik frequency domain methods, found evidence that
COVID-19 media coverage had a major impact on crude oil, gold, and Bitcoin markets.

A widely held belief is that some crypto assets might serve as safe haven assets. However, Yuyama and
others (2023) did not find empirical support for this assertion. Using DCC-GARCH and moving average
models, they established that correlations between crypto assets and equities had increased over time, a
trend partly driven by increased exposures of traditional investors to crypto assets. Correlations were
higher during crisis periods such as the Covid-19 pandemics, the Russia-Ukraine war, and during the
Crypto Winter.

VAR-based connectedness measures assume a linear dependence between the variables in the system
but are still able to capture nonlinearities partially since coefficients are allowed to change over time,
as done in the TVP-VAR framework or by using rolling window estimates in an otherwise static VAR.
Non-linear dependence, however, could be important. In the context of connectedness analysis, an
ideal model-based measure should fulfill two criteria. First, it should capture any existent non-linear
dependence between the variables. Second, to be consistent with the variance decomposition framework
of TVP-VAR measures, the measure should quantify the long-term impact of a short-term shock.

LSTM models satisfy both criteria. First introduced by Hochreiter and Schmidhuber (1997), a LSTM is
a type of recurrent neural network that allows information from the input variables to accumulate over
time via hidden cells. LSTMs have emerged as a promising approach for sequential data analysis (van
Houdt and others 2020), including time series analysis and forecasting (Lim and Zohren 2021; Benidis
and others 2022).

There is an increasing number of LSTM applications in economics and finance that span diverse areas
such as economic forecasting (Hopp 2021), economic growth prediction (Park and Yang 2022), financial
crisis prediction (Tolo 2020), financial time series analysis (Sezer and others 2020, Khosravi and Ghazani
2023), cryptocurrencies price forecasting (Khedr and others 2021, Pour and others 2022, Nasirtafreshi
2022, Gajamannage, Park, and Dilhani 2023), stock market index prediction (Bhandari and others 2022),
stock selection (Zhang and others 2018), and algorithmic long/short trading strategies (Michańków and
others 2022). Despite their versatility, LSTMs have not yet been employed to explore economic and
financial connectedness, a gap this study addresses.

III. Data

The data sample covered the period from August 11, 2015 until October 20, 2023. Daily log-returns
of the two major cryptocurrencies, Bitcoin and Ethereum, were computed using data from CoinGecko,
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and for the 29 GSIBs (FSB 2022), using data from Bloomberg. Table 1 lists the GSIBs included in the
analysis and their name abbreviations and Table 2 presents the summary statistics of the log returns
of the cryptocurrencies and the GSIBs. Cryptocurrencies’ returns are roughly two to three times more
volatile than those of banks. To accomodate different time zones, the price quotes of banks headquartered
in Europe and the United States were lagged by one day.

Table 1. Cryptocurrencies and GSIBs: Abbreviations

Cryptocurrencies

BTC Bitcoin ETH Ethereum

GSIBs

JPM US JPMorgan Chase and Co. BAC US Bank of America Corp.
C US Citigroup WFC US Wells Fargo and Co.
HSBA LN HSBC Holdings PLC 3988 HK Bank of China Limited
BARC LN Barclays PLC BNP FP BNP Paribas SA
DBK GR Deutsche Bank AG GS US The Goldman Sachs Group
601398 CH Industrial and Commercial Bank of China Ltd 8306 JP Mitsubishi UFJ Financial Group Inc.
1288 HK Agricultural Bank of China Ltd BK US Bank of New York Mellon Group
939 HK China Construction Bank Corp. CSGN SW Credit Suisse Group AG
ACA FP Credit Agricole SA INGA NA ING Groep NV
8411 JP Mizuho Financial Group MS US Morgan Stanley
RY CN Royal Bank of Canada SAN SM Banco Santander SA
GLE FP Societe Generale SA STAN LN Standard Chartered PLC
STT US State Street Corp. 8316 JP Sumitomo Mitsui Financial Group Inc.
TD CN Toronto Dominion Bank UBS US UBS Group AG
UCG IM UniCredit SpA

IV. Methodology and model estimation

We evaluate connectedness between cryptocurrencies and GSIBs using two different approaches. The
first one is the Antonakakis-Chatziantoniou-Gabauer (ACG) TVP-VAR connectedness method, in which
the connectedness, or spillover, from one variable to another variable is directly proportional to the
importance of the former in explaining the variance of the forecast error of the latter. The second
approach is the Long Short-Term Memory multiplier (LSTMM), in which the connectedness of a variable
is measured as the difference in the predicted values of other variables when the former is subject to a
shock or not. Both methods are described in detail next.

A. TVP-VAR connectedness measures

The ACG TVP-VAR model is built upon the generalized forecast error variance decomposition (GFEVD)
of Koop and others (1996), and Pesaran and Shin (1998). It further refines and extends the original
framework of Diebold and Yilmaz (2012, 2014).1

1See Gabauer and others 2023 for a complete description of the method.
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Table 2. Log Returns, Cryptocurrencies and GSIBs: Summary Statistics

mean min max sdev

BTC 0.0021998 -0.4337144 0.2870991 0.0450597
ETH 0.0033062 -0.5630799 0.4073331 0.0686111

JPM US 0.0003546 -0.1621058 0.1656203 0.0176540
BAC US 0.0001954 -0.1672046 0.1637858 0.0201140
C US -0.0001723 -0.2144141 0.1653812 0.0213486
HSBA LN -0.0000715 -0.1059862 0.1008125 0.0168768
WFC US -0.0001558 -0.1727786 0.1357072 0.0202874

3988 HK -0.0002056 -0.1090227 0.0713293 0.0127695
BARC LN -0.0004130 -0.2682187 0.1462627 0.0244675
BNP FP -0.0000440 -0.2077742 0.1601192 0.0214540
DBK GR -0.0005029 -0.1896182 0.1315280 0.0257336
GS US 0.0001803 -0.1358806 0.1619513 0.0185078

601398 CH -0.0000891 -0.1047197 0.0967333 0.0124454
8306 JP 0.0000673 -0.0878510 0.1265355 0.0178395
1288 HK -0.0000971 -0.0947121 0.0749092 0.0138385
BK US -0.0000275 -0.1566932 0.1451088 0.0178397
939 HK -0.0001616 -0.1211106 0.0600468 0.0140356

CSGN SW -0.0015441 -0.8156695 0.1741522 0.0299138
ACA FP -0.0000796 -0.1890078 0.1309347 0.0210827
INGA NA -0.0000936 -0.2241363 0.1870075 0.0225411
8411 JP -0.0001091 -0.1089742 0.0814207 0.0147981
MS US 0.0002976 -0.1696028 0.1804034 0.0201565

RY CN 0.0001642 -0.1315806 0.1313494 0.0132665
SAN SM -0.0002545 -0.2383315 0.1705869 0.0228486
GLE FP -0.0003923 -0.2469484 0.1637491 0.0252880
STAN LN -0.0001970 -0.1387903 0.1516729 0.0231201
STT US -0.0000786 -0.2098111 0.2014639 0.0216581

8316 JP 0.0000235 -0.1118053 0.0988941 0.0163685
TD CN 0.0001779 -0.1455822 0.1570028 0.0141414
UBS US 0.0000324 -0.1702666 0.1259075 0.0194654
UCG IM -0.0001732 -0.2882671 0.1460723 0.0279494

Source: Authors’ calculations.

Let x𝑡 be a 𝑘 dimensional vector collecting the daily log returns of the two main cryptocurrencies, Bitcoin
and Ethereum, and the set of banks analyzed. We assume that:

x𝑡 = B𝑡x𝑡−1 + u𝑡, u𝑡 ∼ 𝑁(0, S𝑡) (1)

𝑣𝑒𝑐(B𝑡) = 𝑣𝑒𝑐(B𝑡−1) + v𝑡, v𝑡 ∼ 𝑁(0, R𝑡) (2)

where u𝑡 and v𝑡 are error terms, B𝑡 are 𝑘 × 𝑘 matrices collecting the time-varying VAR coefficients, S𝑡
are the 𝑘 × 𝑘 time-varying variance-covariance matrices, and R𝑡 are 𝑘2 × 𝑘2 dimensional matrices. The
above TVP-VAR model has an equivalent TVP-VMA representation:
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x𝑡 =
∞

∑
𝑗=0

A𝑗𝑡u𝑡−𝑗. (3)

Pairwise directional connectedness (PDC). From the TVP-VMA representation it is possible to
obtain the unscaled GFEVD for a H-step forecast horizon:

𝜓𝑔
𝑖𝑗,𝑡(𝐻) = 𝑆−1

𝑖𝑖,𝑡 ∑𝐻−1
𝑡=1 (𝜄′

𝑡A𝑡S𝑡𝜄j)2

∑𝑘
𝑗=1 ∑𝐻−1

𝑡=1 𝜄𝑗A𝑡S𝑡A′
𝑡𝜄𝑖

, (4)

where 𝜄𝑖 corresponds to a zero vector with unity in the 𝑖-th position. After scaling we can compute the
pairwise directional connectededness measure, PDC, ̃𝜓𝑔

𝑖𝑗,𝑡:

̃𝜓𝑔
𝑖𝑗,𝑡(𝐻) =

𝜓𝑔
𝑖𝑗,𝑡(𝐻)

∑𝑘
𝑗=1 𝜓𝑔

𝑖𝑗,𝑡(𝐻)
, (5)

that satisfies ∑𝑘
𝑗=1

̃𝜓𝑔
𝑖𝑗,𝑡(𝐻) = 1, ∑𝑘

𝑖,𝑗=1
̃𝜓𝑔
𝑖𝑗,𝑡 = 𝑘. The ̃𝜓𝑔

𝑖𝑗,𝑡 measure captures the influence of the
variable 𝑗 on variable 𝑖. If ̃𝜓𝑔

𝑖𝑗,𝑡 = 0, variable 𝑗 has not influence on variable 𝑖. If ̃𝜓𝑔
𝑖𝑗,𝑡 = 1, variable 𝑗

is the only variable that influences variable 𝑖. Notice that ̃𝜓𝑔
𝑖𝑖,𝑡 measures the influence of past values of

variable 𝑖 on itself.

Pairwise net transmitters (PNT). For a pair of variables 𝑖 and 𝑗, we define 𝑖 as a net transmitter
if ̃𝜓𝑔

𝑗𝑖,𝑡(𝐻) − ̃𝜓𝑔
𝑖𝑗,𝑡(𝐻) > 0, or in other words, the influence of 𝑖 on 𝑗 is greater than the other way

around. The pairwise net transmitter (PNT) measure counts the number of variables for which 𝑖 is a
net transmitter:

𝑃𝑁𝑇𝑖𝑡(𝐻) =
𝑘

∑
𝑗=1,𝑗≠𝑖

1{ ̃𝜓𝑔
𝑗𝑖,𝑡(𝐻) − ̃𝜓𝑔

𝑖𝑗,𝑡(𝐻) > 0}, (6)

where 1 is the indicator function.

Total directional connectedness TO and FROM others (TO, FROM). The total influence on
and response of any variable (cryptocurrency or bank) in the network to shocks originating elsewhere in
the network is measured using total directional connectedness measures, which are obtained summing
across the individual 𝑃𝐷𝐶 measures. The first such measure is the total directional connectedness to
others (TO), which captures the total influence of one unit on the rest of the network. The TO measure
is computed as:

𝑇 𝑂𝑖𝑡(𝐻) =
𝑘

∑
𝑗=1,𝑖≠𝑗

̃𝜓𝑔
𝑗𝑖,𝑡(𝐻). (7)

The second measure is the total directional connectedness from others (FROM), which captures the how
much shocks in the network influence unit 𝑖:

𝐹𝑅𝑂𝑀𝑖𝑡(𝐻) =
𝑘

∑
𝑗=1,𝑖≠𝑗

̃𝜓𝑔
𝑖𝑗,𝑡(𝐻). (8)
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Net connectedness (NET). The net connectedness measure is simply the difference between the TO
and FROM measures:

𝑁𝐸𝑇𝑖𝑡(𝐻) = 𝑇 𝑂𝑖𝑡(𝐻) − 𝐹𝑅𝑂𝑀𝑖𝑡(𝐻). (9)

Total connectedness index (TCI). At the network level, it is possible to compute the total con-
nectedness index (TCI) as:

𝑇 𝐶𝐼𝑡(𝐻) =
∑𝑘

𝑗=1,𝑖≠𝑗 𝑇 𝑂𝑖𝑡(𝐻)
𝑘 =

∑𝑘
𝑗=1,𝑖≠𝑗 𝐹𝑅𝑂𝑀𝑖𝑡(𝐻)

𝑘 . (10)

The TCI aggregates the individual connectedness of the currencies and banks both as sources and recip-
ients of spillovers.

TVP-VAR estimation. The TVP-VAR measures were estimated using a one-day lag, as recom-
mended by the Bayesian Information Criterion applied to various pairwise combinations of time series.
Additionally, four different forecasting horizons were considered: 20, 60, 120, and 250 days, roughly
corresponding to 1 month, 3 months, 6 months, and 1 year periods measured in business days. Results
were robust to the choice of the forecasting horizon so only those corresponding to the 20-day horizon
are discussed here.2

B. The LSTM multiplier

The TVP-VAR, thanks to its time-varying parameters, can capture nonlinear dependence to a certain
extent. However, deep learning models developed to deal with sequential data might be better able to
capture nonlinear dependence between the variables, including potential interaction effects. This paper
introduces the concept of the LSTMM. The multiplier quantifies the difference between the 𝑛-periods
ahead predictions a multi-time step LSTM makes when a single variable in the system remains unchanged
and when it is subject to a shock. A concise description of the LSTM block, the LSTM model, and the
definition of the LSTMM follow.

LSTM Block. Each stage in a multi-step LSTM model comprises several LSTM blocks.3 The LSTM
model captures potential long-term dependencies in time series data since information flows from one
LSTM stage to the next through the cell and hidden states. The short-run impact of current observations
is computed within the LSTM block. Our analysis uses the vanilla LSTM block of Greff and others (2007)
which is shown in Figure 1.4

2All calculations were performed using the R package ConnectednessApproach (Gabauer 2022).
3See Hochreiter and Schmidhuber (1997), which introduces the LSTM model; Goodfellow and others (2016) for a concise

introduction; Staudemeyer and Morris (2019) for a comprehensive tutorial; and Olah (2015) for a short and intuitive
introduction to LSTMs.

4For a more detailed explanation see van Houdt and others (2020).
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Figure 1. LSTM Block

Source: Authors.

The block comprises three gates that determine what information is used to update the hidden state, ℎ,
and the cell state, 𝑐. At time 𝑡 − 1, the LSTM block uses the information of the hidden state ℎ𝑡−1 and
the observation 𝑥𝑡 to update the block input, 𝑧:

𝑧𝑡 = tanh (𝑊𝑧𝑥𝑡 + 𝑅𝑧ℎ𝑡−1 + 𝑏𝑧) , (11)

where 𝑊𝑧 and 𝑅𝑧 are weight matrices and 𝑏𝑧 is the bias coefficient. The input gate, 𝑖, combines the
current input 𝑥𝑡−1 and the information in the cell value from the last iteration, 𝑐𝑡−1:

𝑖𝑡 = 𝜎 (𝑊𝑖𝑥𝑡 + 𝑅𝑖ℎ𝑡−1 + 𝑝𝑖 ⊙ 𝑐𝑡−1 + 𝑏𝑖) , (12)

where 𝑊𝑖 and 𝑅𝑖 are weight matrices, 𝑝𝑖 is a weight vector, 𝑏𝑖 is the bias vector, ⊙ is the Hadamard
point-wise multiplication operator, and 𝜎 is the sigmoid function. The forget gate, 𝑓 , evaluates what
information should be removed from the previous cell state 𝑐𝑡−1 using the information from the current
observation 𝑥𝑡, the hidden state, ℎ𝑡−1, and the cell state 𝑐𝑡−1:

𝑓𝑡 = 𝜎 (𝑊𝑓𝑥𝑡 + 𝑅𝑓ℎ𝑡−1 + 𝑝𝑓 ⊙ 𝑐𝑡−1 + 𝑏𝑓) , (13)

where 𝑊𝑓 and 𝑅𝑓 are weight matrices, 𝑝𝑓 is a weight vector and 𝑏𝑓 is the bias vector. With the computed
values of the block input, the forget gate, and the input gate, the LSTM block updates the value of the
cell state, 𝑐𝑡:

𝑐𝑡 = 𝑧𝑡 ⊙ 𝑖𝑡 + 𝑐𝑡−1 ⊙ 𝑓𝑡, (14)

which in turn, combined with the current input, 𝑥𝑡, and previous step hidden state, ℎ𝑡−1 yields the
output gate:

𝑜𝑡 = 𝜎 (𝑊𝑜𝑥𝑡−1 + 𝑅𝑜ℎ𝑡−1) + 𝑝𝑜 ⊙ 𝑐𝑡 + 𝑏0, (15)
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where 𝑊𝑜, 𝑅𝑜, and 𝑝𝑜 are the matrix and vector weights, and 𝑏𝑜 is the bias vector. Finally, the hidden
state is updated to ℎ𝑡 using the information delivered by the output gate :

ℎ𝑡 = tanh(𝑐𝑡 ⊙ 𝑜𝑡). (16)

Additionally, the new hidden state ℎ𝑡 could be passed to a regression layer, typically a fully connected
layer, to predict 𝑥𝑡+1 as ̂𝑠𝑡+1.

The multi-time step LSTM model. Figure 2 shows a single stage of the time unfolded multi-time
step single layer LSTM model. The architecture of the LSTM network comprises a LSTM layer with 𝑛
LSTM blocks. Let 𝑥𝑗 = [𝑥𝑗,1, … , 𝑥𝑗,𝑘]𝑇 be the vector collecting the observed values of the 𝑘 variables
in the system at time 𝑗. For a sequence of 𝑛 time-ordered observations, 𝑥𝑗, 𝑗 = 𝑡, … , 𝑡 + 𝑛 − 1, the
LSTM model attempts to predict the value of 𝑥𝑡+𝑛. Note the similarity of the information set with that
of a VAR model with 𝑛 lags, that also assumes that only the past 𝑛 realizations of the variables serve
to predict their current values. The main difference with the VAR regarding the information set is that
each stage of the LSTM could carry information, which is contained in 𝑐𝑡−1 and ℎ𝑡−1, to the next stage.

Figure 2. Multi-Step LSTM Network

Source: Authors.
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To make a prediction, the LSTM model uses as an initial input the state information from the previous
stage and summarized in [𝑐𝑡−1, ℎ𝑡−1], where 𝑐 is the cell (or memory) state and ℎ is the hidden state.
The cell state preserves past information the LSTM model considers useful for making predictions once
it filters and passesit to the hidden state. The LSTM block receives the previous state information and
combines it with new information from the observation 𝑥𝑡. Based on the new information, the LSTM
block decides what past information to retain, what new information to add, and how much of the
updated information should be passed to the hidden state.

in case a prediction is needed. In this case, the hidden state information is passed to a fully connected
(dense) layer to generate the prediction ̂𝑠𝑡+1.

The computation cycle is repeated in each of the remaining 𝑛−1 steps. In the last step 𝑛, the information
in the hidden state ℎ𝑡+𝑛 is passed to a fully connected (dense) layer to generatge the prediction ̂𝑠𝑡+𝑛. The
prediction is them compared to the observed value of 𝑥𝑡+𝑛, and a loss metric is computed using a pre-
specified loss function, the root mean squared error (RMSE). The training of the model, a.k.a. parameter
estimation, is performed using multiple samples, i.e. blocks of 𝑛 observations and the parameters are
computed by minimizing the cumulative loss over the sample predictions. Since only the 𝑛-period ahead
prediction matters, the predictions in earlier periods, ̂𝑠𝑡+𝑖, 𝑖 = 1, … , 𝑛 − 1, do not matter in the loss
calculation but are used in the computation of the LSTMM.

Figure 3. Multi-Step Multi-Layer LSTM Network

Source: Authors.



12

The single layer LSTM model could be expanded by stacking successive LSTM layers on top of each
other. In this case, in each of the time steps of the hidden state of the first LSTM layer are the inputs to
the next LSTM layer and so on. At the end of a given time step, the cell and hidden states are updated
and passed to the next time step. When the last time-step is reached, the hidden state of the last layer
is fed into a fully connected layer to generate the prediction ̂𝑠𝑡+𝑛 (Figure 3).

The LSTM Multiplier (LSTMM). The computation of the LSTMM for variable 𝑖 requires con-
structing baseline and shock input sequences for the LSTM model using a closed-loop method. Let the
baseline input sequence be 𝑥𝐵

𝑡∶𝑡+𝑛−1 = [𝑥𝑡, ̂𝑠𝑡+1, ̂𝑠𝑡+2, … , ̂𝑠𝑡+𝑛−1]𝑇 . In period 𝑡, the state 𝑛 periods earlier,
[𝑐𝑡−𝑛, ℎ𝑡−𝑛], is set to [0, 0], which together with the sequence {𝑥𝑡−𝑛+1, 𝑥𝑡−𝑛+2, … , 𝑥𝑡}, is input into the
LSTM to generate ̂𝑠𝑡+1. The LSTM now generates ̂𝑠𝑡+2 using as inputs the state 𝑛 − 1 periods earlier,
[𝑐𝑡−𝑛+1, ℎ𝑡−𝑛+1], which is set to [0, 0], and the sequence {𝑥𝑡−𝑛+2, 𝑥𝑡−𝑛+3, … , 𝑥𝑡, ̂𝑠𝑡+1}. The process is re-
peated until it generates the last element in the baseline input sequence. With this sequence the LSTM
yields the 𝑛-step ahead prediction 𝑠𝐵

𝑡+𝑛:

𝑠𝐵
𝑡+𝑛 = LSTM(𝑥𝐵

𝑡∶𝑡+𝑛−1). (17)

Similarly, let the shock input sequence, when only variable 𝑖 is affected, be 𝑥𝐶
𝑖,𝑡∶𝑡+𝑛−1 = [𝑥𝑡 +

Δ𝑖, ̃𝑠𝑡+1, ̃𝑠𝑡+2, … , ̃𝑠𝑡+𝑛−1]𝑇 , where Δ𝑖 = [0, … , 𝛿𝑖, … , 0] is a shock vector, 𝛿𝑖 is the shock to variable 𝑖, and
̃𝑠𝑡+𝑖 are the intermediate outputs calculated sequentially in a similar manner as for the baseline input

sequence. The 𝑛-step ahead prediction when variable 𝑖 experiences the shock 𝛿𝑖 is 𝑠𝐶
𝑘,𝑡+𝑛:

𝑠𝐶
𝑖,𝑡+𝑛 = LSTM(𝑥𝐶

𝑖,𝑡∶𝑡+𝑛−1). (18)

We now define the LSTMM of variable 𝑖 at time 𝑡 as the vector-valued variable LSTMM(𝑖, 𝑡):

LSTMM(𝑖, 𝑡) = |𝑠𝐶
𝑖,𝑡+𝑛 − 𝑠𝑏

𝑡+𝑛| ⊘ Ω
= [LSTMM(𝑖, 1, 𝑡), LSTMM(𝑖, 2, 𝑡), … , LSTMM(𝑖, 𝑘, 𝑡)]𝑇

(19)

where Ω = [𝜎1, 𝜎2, … , 𝜎𝑘]𝑇 is the vector collecting the standard deviation of the forecast errors of each
variable, ⊘ is the element-wise division operator, and 𝑘 is the number of variables in thesystem. The
𝑗-th element in LSTMM(𝑖, 𝑗, 𝑡) is the value of the LSTMM from variable 𝑖 to variable 𝑗. In contrast to
the TVP-VAR connectedness measure, in any given time period 𝑡 the LSTMM values is a function of
the observation 𝑥𝑡 since the nonlinear interactions between the variables might depend on their current
values.

Estimation of the LSTMM. The estimation of the LSTMM required fitting a LSTM to the daily
log return data described in section 3 and specifying the shocks to the variables in the system. The
hyperparameters of the LSTM were the number of time steps, the size of the hidden state (or number or
neurons), the number of layers in the LSTM, and the dropout rate. The last hyperparameter forces the
LSTM to drop out the input of a subset of the neurons from one layer to the next and helps to prevent
model overfitting.

While the number of time steps was set equal to 20 days to be consistent with the TVP-VAR forecast
horizon, the LSTM was fitted for different values of the other hyperparameters. The number of neurons
was allowed to vary from 1 to 5 neurons per variable, taking values in [31, 62, … , 155], the number of
layers could be either 1, 2, or 3, and the dropout rate could take any of the values in [0.3, 0.4, 0.5].
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Standard five-fold cross-validation was used to select the hyperparameters, using mean squared error
as the loss metric. Given the number of time steps, 𝑛, the data observations were partitioned into
overlapping subsequences with length equal to the number of steps. It was assumed that the prediction
𝑜𝑛𝑒 step ahead only depended on the previous 𝑛 observations, so short time-step sample were considered
i.i.d. realizations of the same underlying data generating process, justifying the use of the standard
cross-validation procedure. To be consistent with the assumption that only the information in the past
𝑛 observations mattered, the initial values of the cell and hidden states in each sample were set equal to
zero. The final architecture of the LSTM was 1 neurons per variable for a total of 31 neurons, using one
layers of LSTM.

Once the hyperparameters were fixed, the forecast errors of the LSTM were computed for each of the
variables. The LSTMM of a source variable, i.e. the variable experiencing the shock, was computed
assuming a shock equal to one percent of the standard deviation of the forecast errors 20 days ahead.
The chosen shock value mirrors to a certain extent the calculation of the impulse response function in a
VAR system.

V. Results

The results, either from the TVP-VAR or the LSTM analyses, suggest there have been no major spillovers
from cryptocurrencies to the GSIB system. Rather, the latter does impact cryptocurrencies on aggregate
despite the fact that the effect of any individual GSIB is small. Nevertheless, there have been short
periods during which cryptocurrencies did have a large impact on banks. We discuss these results in
detail below.

A. TVP-VAR connectedness

The estimated TO and FROM measures assess how variables influence each other, whether it be a
cryptocurrency or a single GSIB. The discussion focuses first on the impact the cryptocurrencies have
had on the GSIB sector by summing up the pairwise TO measures of the former on each GSIB bank. The
impact of a cryptocurrency on the GSIB sector, or its total connectedness or spillovers, can be normalized
to values in [0,1]. Total connectedness would be equal to 1 (or 100 percent) if the cryptocurrency fully
explains the forecast variance of the GSIBs and equal to 0 if it explains none of it.

The left panel of Figure 4 shows the total connectedness from Bitcoin and Ethereum to GSIBs. Connect-
edness from cryptocurrencies to the GSIB sector has been relatively small, seldom exceeding 4 percent
when averaged across all GSIBs, for each cryptocurrency (Table 3). Periods during which connectedness
peaked, albeit remaining significantly small, tend to coincide with periods of high market distress and
heightened volatility, such as in late 2015, when equity and commodity markets were upset by concerns
about economic growth in China and Greece’s debt negotiations stalled; the start of the COVID-19
pandemic in 2020; the beginning of the war between Russia and Ukraine, and the Crypto Winter 2022.

The GSIBs, on aggregate, have had a larger impact on the cryptocurrencies. The connectedness of the
GSIB sector to a cryptocurrency, or spillover, is computed as the sum of the cryptocurrency’s FROM
GSIB measures. The total spillover of the GSIB sector to a cryptocurrency could take values in [0,1],
with the value 1 (100 percent) corresponding to the case when the GSIB sector explains all of the forecast
variance of the cryptocurrency, and 0 if it explains none. The right panel in Figure 4 shows that in periods
of high economic uncertainty the GSIB sector can explain as much as 90 percent of a cryptocurrency. It
is noteworthy that during the Crypto Winter, when the media focused on the risk of spillovers from the
crypto space to the broader financial system, spillovers from the banking sector dominated those from
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cryptocurrencies. Lastly, regardless of the direction of spillovers, cryptocurrencies and GSIBs began to
decouple from each other in early 2023.

Table 3. TO Connectedness Measures: Summary Statistics, Full Sample (Percent)

Sample statistics
Cross-section Standard
statistics, daily Mean Minimum Maximum deviation

A: Bitcoin to GSIBs
Minimum 0.10 0.00 1.43 0.16
Mean 0.44 0.06 4.03 0.44
Maximum 1.23 0.20 10.45 1.12

B: Ethereum to GSIBs
Minimum 0.10 0.00 1.26 0.16
Mean 0.45 0.06 2.42 0.39
Maximum 1.14 0.17 5.38 0.71

C: GSIBs to Bitcoin
Minimum 0.12 0.00 1.31 0.14
Mean 1.11 0.18 3.18 0.66
Maximum 2.65 0.38 15.61 1.32

D: GSIBs to Ethereum
Minimum 0.10 0.00 0.97 0.13
Mean 1.12 0.17 3.10 0.67
Maximum 3.06 0.38 31.25 2.39

E: GSIBs to other GSIBs
Minimum 0.06 0.00 0.42 0.06
Mean 2.99 2.80 3.29 0.08
Maximum 19.79 7.85 30.27 2.96

F: Between cryptocurrencies
Bitcoin To Ethereum 19.44 0.04 36.93 10.35
Ethereum To Bitcoin 19.60 0.10 36.43 10.54

Source: Authors’ calculations.
Note: TO connectedness measures the percent contribution of the source variable to ex-
plain the 20-day forecast variance decomposition of the target variable. Columns 2 to 5
in Panels A to E report the full sample summary statistics of the daily cross-section
GSIB’s statistics.

Connectedness between cryptocurrencies can exhibit large fluctuations (Figure 5). Connectedness in-
creased gradually from a very low level during periods of rising cryptocurrency prices and dropped
sharply during major price correction periods such as the start of the COVID-19 pandemic. At that
time, connectedness to GSIBs greatly exceeded that between cryptocurrencies (Figure 4, right panel).
These results are consistent with those of ther studies, which found that cryptocurrencies price corre-
lations move opposite to the degree of uncertainty in the markets (Nakagawa and Sakemoto 2022) and
that connectedness rose again in the aftermath of the COVID-19 period (Kumar and others 2022).
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Figure 4. TO and FROM Connectedness of Cryptocurrencies and GSIBs (Percent of variance)
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Sources: Bloomberg Finance L.P., CoinGecko, and authors’ calculations.

Lower connectedness in periods of high uncertainty is also consistent with the perception in crypto mar-
kets that Bitcoin is akin to a safe asset or “digital gold” while Ethereum is akin to a growth, speculative
stock. The fall in connectedness then reflects a flight to safety in the crypto space. Ongoing structural
changes might also affect connectedness. Each cryptocurrency has its own blockchain platform and until
recently, both blockchains used Proof-of-Work. Ethereum has switched to Proof-of-of-Stake validation
which favors validators with larger stakes in the cryptocurrency (Sergeenkov and Bochan 2023).

Figure 5. Cryptocurrency Connectedness (Percent of variance)
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Sources: Bloomberg Finance L.P., CoinGecko, and authors’ calculations.
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Cryptocurrencies’ connectedness to the GSIB sector has been relativley small. Sectoral results, how-
ever, could be deceiving since they do not suffice to evaluate vulnerabilities at the single GSIB level.
Under certain scenarios or historic episodes, a single GSIB or a few of them could be highly exposed
to cryptocurrencies while most of the other GSIBs are only weakly connected.5 Figure 6, which plots
cryptocurrencies maximum pairwise TO connectedness to a single GSIB, shows this is not the case most
of the time. Neverthless, in periods of high uncertainty, some GSIBs might experience larger than usual
spillovers from cryptocurrencies (Table 3).

Figure 6. Cryptocurrencies Maximum Conectedness to a Single GSIB (Percent of variance)
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The analysis focuses now on the maximum connectedness measure flowing from individual GSIBs to
cryptocurrencies and to other GSIBs. As in the case of cryptocurrencies, this measure is derived from
the GSIBs’ pairwise TO connectedness measures. When a cryptocurrency is the spillover target, the
maximum connectedness correspond to the TO measure of the GSIB that influences the currency the
most. When other GSIBs are the main targets, the maximum connectedness singles out the pairwise
TO measure with the highest value, that is, it picks the two GSIBs more strongly connected, one as the
spillover source and the other as the spillover recipient.

Figure 7 shows that, despite the large influence GSIBs on aggregate have on cryptocurrencies (see Figure
4, right panel), at the individual GSIB level connectedness is small. As it was the case with the other
connectedness measures analyzed above, GSIBs influence on cryptocurrencies peaked in the second half of
2015 and has faded away since then. The maximum pairwise connectedness between GSIBs has remained
relatively stable, taking values between 15 to 30 percent. Typically, the maximum connectedness has
occurred between GSIBs headquartered in the same region, arguably driven by regional common factors.

5For instance, if a cryptocurrency explains 100 percent of the variance of a particular GSIB but none of the variance for
the remaining GSIBs, the cryptocurrency aggregate TO measures will have a value of 1. This value is also consistent with
a very different case where the cryptocurrency explains just 3 percent of the variance of each GSIB.
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From a systemic risk assessment, it is also important to determine which cryptocurrency or specific GSIB
serves as the primary transmitter (or source) of shocks. Table 4 shows the summary statistics of the TO,
FROM, NET, and PNT measures calculated over the study sample from 2015 to 2023. GSIBs with large
investment bank operations were the primary transmitters. Among them, US firms ranked first followed
closely by European firms. Any of these firms had a major influence over more than 20 other firms as well
as on the cryptocurrencies. Snapshots of the connectedness measures at different time periods suggest
that the full sample rankings have remained unchanged over time. For instance, Table 5 shows that in
October 2023, US and European GSIBs were the most important net transmitters, underscoring their
ongoing importance as sources of systemic risk.

Figure 7. Maximum Connectedness of a Single GSIB to Cryptocurrencies and other GSIBs (Percent of
variance)
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Table 4. TVP-VAR Connectedness Measures: Summary Statistics

TO (in percent) FROM (in percent)

mean min max sdev mean min max sdev

BTC 32.33 2.71 123.8 14.49 51.84 16.58 93.25 17.69
ETH 32.64 6.7 77.95 14.38 51.83 18.58 92.81 18.25

JPM US 110.92 85.19 140.03 7.74 90.25 86.57 94.86 1.7
BAC US 111.16 77.24 131.47 5.99 90.23 86.28 96.97 1.82
C US 110.44 86.77 141.85 7.39 90.15 86.43 94.92 1.67
HSBA LN 71.51 35.76 106.41 13.91 86.88 78 93.57 3.53
WFC US 91.91 61.14 137.5 12.99 88.12 79.04 94.76 2.98

3988 HK 68.95 41.96 113.29 12.25 71.56 56.97 95.29 5.79
BARC LN 87.63 33.19 163.44 19.72 88.13 75.75 94.62 4.2
BNP FP 104.77 78.23 202.69 8.15 90.24 86.16 95.12 1.9
DBK GR 97.49 58.36 159.96 9.79 89.1 80.76 94.25 2.33
GS US 100.03 78.83 136.84 8.18 89.23 83.45 94.83 2.16

601398 CH 25.41 6.68 184.21 11.7 49.73 24.12 92.61 12.47
8306 JP 77.16 45.99 131.37 7.45 83.43 72.18 97.48 3.64
1288 HK 63.68 39.03 108.67 11.65 70.18 52.18 93.85 6.76
BK US 91.05 44.15 116.45 12.95 87.91 75.15 95.88 3.86
939 HK 68.94 34.6 129.91 14.97 71.57 53.27 94.79 5.89

CSGN SW 78.18 14.25 452.59 32.16 85.49 47.38 95.24 9.3
ACA FP 94.81 61.81 300.57 12.81 89.37 81.44 95.95 2.59
INGA NA 99.44 59.9 171.22 11.16 89.57 80.76 94.94 2.39
8411 JP 65.12 34.83 136.75 7.58 81.18 70.31 96.89 4.12
MS US 107.86 77.74 137.24 8.97 89.92 85.75 95.81 1.8

RY CN 75.67 50.85 112.23 12.59 86.15 72.91 95.91 4.25
SAN SM 97.84 74.43 174.56 9.03 89.41 83.58 94.37 2.19
GLE FP 99.52 60.98 157 12.26 89.64 81.82 94.95 2.54
STAN LN 72.81 52.32 94.91 11.04 87.05 77.65 95.03 3.4
STT US 92.85 66.14 189.16 9.04 88.12 78.7 94.59 2.88

8316 JP 74.81 53.46 146.17 9.39 82.95 71.1 97.14 4.12
TD CN 73.65 35.74 112.24 18.13 84.99 64.85 96.74 6.43
UBS US 100.95 76.38 139.69 7.65 89.25 82.76 94.88 2.22
UCG IM 81.02 47.79 202.12 11.32 87.09 74.74 94.45 3.42

Source: Authors’ calculations.
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Table 4. TVP-VAR Connectedness Measures: Summary Statistics (continued)

NET (in percent) PNT

mean min max sdev mean min max sdev

BTC -19.5 -52.64 59.76 11.44 4.58 0 24 3.1
ETH -19.19 -78.33 0.23 11.42 4.57 0 21 3.23

JPM US 20.67 -6.9 50.68 8.15 26.58 8 30 3.34
BAC US 20.93 -19.73 40.63 6.09 26.87 11 30 3.2
C US 20.3 -6.6 50.93 7.78 26.04 12 30 3.65
HSBA LN -15.37 -45.57 17.35 11.25 8.33 1 22 4.7
WFC US 3.79 -19.5 47.78 10.99 17.52 4 30 4.87

3988 HK -2.6 -47.19 36.45 11.93 10.77 0 27 6.07
BARC LN -0.51 -44.28 73.98 16.07 14.93 1 29 7.45
BNP FP 14.52 -10.07 111.68 7.62 23.09 8 30 5.11
DBK GR 8.39 -25.12 70.28 8.92 19.16 3 30 5
GS US 10.8 -15.75 45.27 7.3 21 10 28 4.06

601398 CH -24.32 -74.98 132.79 10.33 4.5 0 30 3.72
8306 JP -6.28 -51.49 42.57 6.82 11.07 2 27 3.67
1288 HK -6.49 -39.05 28.87 10.27 9.26 1 25 5.28
BK US 3.14 -37.96 25.51 9.96 17.12 2 30 4.86
939 HK -2.63 -44.51 48.2 13.49 10.57 0 27 6.38

CSGN SW -7.31 -58.91 366.61 27.74 11.1 0 30 5.46
ACA FP 5.44 -22.18 215.17 11.24 17.74 5 30 5.32
INGA NA 9.86 -21.04 79.78 9.74 20.27 5 30 5.37
8411 JP -16.06 -61.72 50.76 7.38 7.63 2 27 3.4
MS US 17.94 -15.69 44 8.89 24.83 8 30 4.2

RY CN -10.48 -41.27 17.81 9.78 9.66 0 24 4.37
SAN SM 8.43 -16.38 83.52 8.34 18.79 7 30 4.98
GLE FP 9.88 -22.75 64.82 10.41 20.63 4 30 6.54
STAN LN -14.24 -41 3.58 8.98 8.18 0 21 3.58
STT US 4.74 -13.83 98.93 7.28 17.87 6 27 3.6

8316 JP -8.14 -37.32 58.57 7.75 10.26 3 28 3.65
TD CN -11.35 -43.95 22.36 12.57 9.36 0 24 5.3
UBS US 11.7 -14.66 48.65 6.7 21.01 5 30 3.96
UCG IM -6.07 -28.88 114.08 8.85 11.73 2 28 3.15

Source: Authors’ calculations.
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Table 5. Cryptocurrencies and GSIBs TVP-VAR Connectedness, October 2023

BTC ETH JPM US BAC US C US WFC US HSBA LN 3988 HK

BTC 48.16 19.60 1.33 1.35 1.45 0.84 1.27 0.40
ETH 19.44 48.17 1.12 1.15 1.46 0.79 1.10 0.53

JPM US 0.39 0.38 9.75 7.80 7.12 2.09 6.00 0.78
BAC US 0.43 0.37 7.80 9.77 7.21 2.13 6.19 0.71
C US 0.47 0.46 7.17 7.26 9.85 2.16 5.78 0.83
HSBA LN 0.35 0.39 2.98 3.03 3.06 13.12 2.59 2.36
WFC US 0.44 0.40 7.18 7.44 6.89 2.15 11.88 0.79

3988 HK 0.39 0.29 1.50 1.41 1.57 0.91 1.39 28.44
BARC LN 0.38 0.44 3.07 3.08 3.11 4.37 2.39 0.98
BNP FP 0.34 0.38 2.85 2.71 2.87 3.34 2.14 0.90
DBK GR 0.51 0.50 3.70 3.78 3.85 2.94 2.98 0.69
GS US 0.49 0.50 6.91 6.94 6.69 1.93 5.43 0.80

601398 CH 0.73 0.58 0.97 0.96 1.09 0.57 1.09 8.05
8306 JP 0.37 0.45 3.39 3.41 3.01 1.72 3.07 1.22
1288 HK 0.44 0.33 1.30 1.29 1.51 1.02 1.32 17.23
BK US 0.46 0.47 6.35 6.66 6.33 2.06 5.33 0.79
939 HK 0.50 0.31 1.45 1.39 1.54 1.01 1.33 17.48

CSGN SW 0.48 0.55 3.18 3.24 3.43 3.08 2.59 1.12
ACA FP 0.45 0.47 2.81 2.76 2.84 3.30 2.08 0.92
INGA NA 0.39 0.45 2.74 2.70 2.85 3.72 2.14 0.99
8411 JP 0.36 0.47 2.94 2.89 2.57 1.59 2.72 1.01
MS US 0.54 0.52 6.81 6.87 6.60 1.97 5.19 0.81

RY CN 0.51 0.54 4.62 4.38 4.59 2.30 3.78 1.09
SAN SM 0.37 0.37 2.69 2.62 2.84 3.81 2.20 1.04
GLE FP 0.35 0.43 2.72 2.63 2.77 3.32 2.17 0.92
STAN LN 0.41 0.44 2.86 2.81 2.87 6.06 2.36 2.07
STT US 0.47 0.47 6.08 6.33 6.02 2.04 4.95 0.86

8316 JP 0.46 0.52 3.16 3.28 2.89 1.77 2.81 1.15
TD CN 0.51 0.53 4.53 4.37 4.55 2.37 3.84 0.84
UBS US 0.55 0.54 4.25 4.22 4.35 2.70 3.60 0.91
UCG IM 0.35 0.46 2.43 2.41 2.50 3.45 2.08 0.67

TO 32.33 32.64 110.92 111.16 110.44 71.51 91.91 68.95
Including Own 80.50 80.81 120.67 120.93 120.30 84.63 103.79 97.40
NET -19.50 -19.19 20.67 20.93 20.30 -15.37 3.79 -2.60
PNT 2.00 2.00 29.00 30.00 28.00 4.00 16.00 10.00

Source: Authors’ calculations.
Note: Any given column 𝑗 reports:
(1) PDCs, influence of variable 𝑗 listed in the column to variables 𝑖 listed in the row;
(2) TO, the sum of 𝑗’s PDC measures;
(3) NET, 𝑗’s net influence over all variables;
(4) PNT, the number of variables which 𝑗 dominates.
All measures in percent except NPT.
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Table 5. Cryptocurrencies and GSIBs TVP-VAR Connectedness, October 2023 (continued)

BARC LN BNP FP DBK GR GS US 601398 CH 8306 JP 1288 HK BK US

BTC 1.14 1.13 1.48 1.60 0.55 0.72 0.47 1.39
ETH 1.16 1.03 1.47 1.51 0.46 0.73 0.51 1.24

JPM US 2.47 2.69 3.37 6.30 0.27 2.18 0.60 5.38
BAC US 2.49 2.56 3.46 6.31 0.25 2.17 0.57 5.61
C US 2.56 2.70 3.53 6.15 0.33 1.97 0.69 5.39
HSBA LN 5.05 4.48 3.54 2.52 0.69 1.94 1.95 2.46
WFC US 2.31 2.34 3.24 5.93 0.26 2.26 0.63 5.35

3988 HK 0.93 1.27 1.14 1.26 4.79 2.08 16.81 1.28
BARC LN 11.87 5.62 4.36 2.67 0.35 1.62 0.87 2.50
BNP FP 4.80 9.76 4.73 2.54 0.34 1.59 0.82 2.29
DBK GR 4.09 5.16 10.90 3.59 0.28 1.79 0.69 3.10
GS US 2.33 2.59 3.55 10.77 0.21 2.15 0.58 4.96

601398 CH 0.68 0.81 0.76 0.85 50.27 1.61 7.65 1.03
8306 JP 1.92 2.16 2.52 3.04 0.60 16.57 1.15 2.57
1288 HK 0.89 1.10 1.08 1.13 4.96 1.99 29.82 1.05
BK US 2.39 2.49 3.25 5.35 0.35 2.03 0.59 12.09
939 HK 0.99 1.23 1.10 1.20 5.02 1.97 15.89 1.26

CSGN SW 4.13 5.15 4.55 2.99 0.40 1.95 1.07 2.52
ACA FP 4.72 7.14 4.75 2.45 0.30 1.58 0.92 2.22
INGA NA 5.01 6.94 4.59 2.48 0.43 1.80 0.97 2.29
8411 JP 1.79 2.23 2.12 2.67 0.61 13.49 0.91 2.33
MS US 2.34 2.65 3.46 7.13 0.26 2.12 0.63 5.24

RY CN 2.86 3.07 3.18 4.58 0.49 1.91 0.98 3.56
SAN SM 4.77 6.68 4.65 2.38 0.41 1.66 1.02 2.22
GLE FP 4.86 7.79 4.85 2.38 0.27 1.61 0.84 2.24
STAN LN 5.14 4.84 3.76 2.28 0.61 1.69 1.91 2.33
STT US 2.60 2.64 3.21 5.50 0.28 1.87 0.67 7.73

8316 JP 2.03 2.16 2.35 2.87 0.57 13.21 1.06 2.48
TD CN 3.01 2.93 3.22 4.17 0.51 2.00 0.84 3.42
UBS US 3.50 4.30 5.21 4.07 0.28 1.90 0.78 3.57
UCG IM 4.70 6.86 5.01 2.13 0.28 1.58 0.62 2.04

TO 87.63 104.77 97.49 100.03 25.41 77.16 63.68 91.05
Including Own 99.49 114.52 108.39 110.80 75.68 93.72 93.51 103.14
NET -0.51 14.52 8.39 10.80 -24.32 -6.28 -6.49 3.14
PNT 13.00 26.00 19.00 24.00 1.00 11.00 7.00 17.00

Source: Authors’ calculations.
Note: Any given column 𝑗 reports:
(1) PDCs, which measure the influence of variable 𝑗 listed in the column to variables 𝑖 listed in the row;
(2) TO, the sum of 𝑗’s PDC measures;
(3) NET, 𝑗’s net influence over all varaibles;
(4) PNT, the number of variables which 𝑗 dominates.
All measures in percent except NPT.
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Table 5. Cryptocurrencies and GSIBs TVP-VAR Connectedness, October 2023 (continued)

939 HK CSGN SW ACA FP INGA NA 8411 JP MS US RY CN SAN SM

BTC 0.40 1.24 1.30 1.12 0.71 1.67 1.26 1.10
ETH 0.54 1.23 1.28 1.16 0.78 1.74 1.24 1.02

JPM US 0.71 2.28 2.40 2.45 1.65 6.62 3.29 2.41
BAC US 0.69 2.29 2.34 2.38 1.59 6.67 3.07 2.34
C US 0.80 2.41 2.40 2.54 1.49 6.46 3.26 2.55
HSBA LN 2.40 3.30 4.04 4.71 1.44 2.70 2.32 4.68
WFC US 0.71 2.07 2.09 2.21 1.71 6.05 3.15 2.30

3988 HK 17.56 0.86 1.16 1.45 1.53 1.29 0.97 1.36
BARC LN 1.04 3.82 5.13 5.60 1.24 2.85 2.48 5.15
BNP FP 0.99 4.14 6.65 6.58 1.42 2.77 2.31 6.17
DBK GR 0.76 3.96 4.77 4.76 1.32 3.72 2.51 4.76
GS US 0.74 2.34 2.28 2.38 1.64 7.60 3.56 2.33

601398 CH 8.11 1.04 0.73 1.02 1.64 0.93 0.90 1.03
8306 JP 1.17 2.14 2.00 2.44 11.95 3.18 1.84 2.22
1288 HK 16.57 1.03 1.02 1.34 1.47 1.27 1.13 1.39
BK US 0.74 2.16 2.24 2.37 1.57 5.98 3.04 2.31
939 HK 28.43 0.94 1.16 1.47 1.57 1.37 1.18 1.39

CSGN SW 1.21 14.51 4.39 4.39 1.55 3.36 2.23 4.36
ACA FP 1.07 3.93 10.63 6.45 1.24 2.78 2.29 5.97
INGA NA 1.14 3.74 6.27 10.43 1.37 2.65 2.31 6.13
8411 JP 1.07 2.02 1.79 2.20 18.82 2.93 1.83 2.31
MS US 0.79 2.42 2.44 2.42 1.68 10.08 3.46 2.44

RY CN 1.12 2.46 2.69 2.88 1.62 4.74 13.85 2.95
SAN SM 1.09 3.82 5.98 6.27 1.46 2.67 2.38 10.59
GLE FP 0.99 4.07 6.76 6.19 1.41 2.70 2.10 6.06
STAN LN 1.97 3.41 4.28 4.93 1.38 2.64 2.61 5.05
STT US 0.71 2.27 2.44 2.45 1.44 6.03 3.18 2.58

8316 JP 1.19 2.01 1.96 2.38 12.78 3.18 1.84 2.26
TD CN 0.93 2.35 2.71 2.80 1.70 4.41 8.94 3.01
UBS US 0.98 4.63 3.82 3.80 1.50 4.53 2.91 3.73
UCG IM 0.74 3.82 6.30 6.29 1.27 2.40 2.08 6.47

TO 68.94 78.18 94.81 99.44 65.12 107.86 75.67 97.84
Including own 97.37 92.69 105.44 109.86 83.94 117.94 89.52 108.43
NET -2.63 -7.31 5.44 9.86 -16.06 17.94 -10.48 8.43
PNT 8.00 11.00 20.00 22.00 6.00 27.00 10.00 20.00

Source: Authors’ calculations.
Note: Any given column 𝑗 reports:
(1) PDCs, which measure the influence of variable 𝑗 listed in the column to variables 𝑖 listed in the row;
(2) TO, the sum of 𝑗’s PDC measures;
(3) NET, 𝑗’s net influence over all varaibles;
(4) PNT, the number of variables which 𝑗 dominates.
All measures in percent except NPT.
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Table 5. Cryptocurrencies and GSIBs TVP-VAR Connectedness, October 2023 (continued)

GLE FP STAN LN STT US 8316 JP TD CN UBS US UCG IM FROM

BTC 1.30 0.87 1.60 0.75 1.19 1.55 1.07 51.84
ETH 1.25 0.89 1.59 0.81 1.58 1.76 1.23 51.83

JPM US 2.51 1.96 5.13 1.99 3.20 3.90 1.94 90.25
BAC US 2.43 1.95 5.33 2.01 3.09 3.88 1.91 90.23
C US 2.56 1.97 5.12 1.86 3.24 4.03 2.00 90.15
HSBA LN 4.23 6.09 2.44 1.87 2.30 3.39 3.58 86.88
WFC US 2.33 1.86 4.98 2.02 3.19 3.94 1.92 88.12

3988 HK 1.03 1.01 1.32 1.93 0.81 1.28 1.01 71.56
BARC LN 5.45 4.55 2.70 1.61 2.58 3.90 4.23 88.13
BNP FP 7.41 3.62 2.47 1.52 2.20 4.10 5.28 90.24
DBK GR 5.08 3.08 3.05 1.62 2.51 5.28 4.29 89.10
GS US 2.35 1.71 5.07 2.03 3.20 4.09 1.86 89.23

601398 CH 0.70 0.72 1.17 1.64 1.09 0.82 0.74 49.73
8306 JP 2.16 1.70 2.55 12.91 1.96 2.63 1.97 83.43
1288 HK 0.89 1.29 1.16 1.84 0.80 1.40 0.91 70.18
BK US 2.37 1.87 7.76 1.94 2.92 3.86 1.86 87.91
939 HK 1.01 1.20 1.22 1.97 0.98 1.40 1.03 71.57

CSGN SW 4.88 3.13 2.65 1.78 2.11 5.34 3.65 85.49
ACA FP 6.90 3.52 2.51 1.45 2.28 4.02 5.25 89.37
INGA NA 6.21 3.86 2.42 1.70 2.23 3.92 5.13 89.57
8411 JP 2.21 1.65 2.27 14.05 1.91 2.44 1.80 81.18
MS US 2.51 1.84 5.22 2.07 3.19 4.29 2.00 89.92

RY CN 2.68 2.45 3.80 1.80 8.39 3.89 2.21 86.15
SAN SM 6.22 4.07 2.48 1.64 2.39 3.79 5.42 89.41
GLE FP 10.36 3.53 2.40 1.51 2.12 4.08 5.56 89.64
STAN LN 4.47 12.95 2.40 1.67 2.42 3.67 3.71 87.05
STT US 2.52 1.84 11.88 1.77 2.95 4.20 2.00 88.12

8316 JP 2.12 1.74 2.48 17.05 1.92 2.37 1.94 82.95
TD CN 2.70 2.41 3.52 1.88 15.01 3.77 2.24 84.99
UBS US 4.14 2.85 3.88 1.66 2.80 10.75 3.28 89.25
UCG IM 6.90 3.56 2.18 1.49 2.10 3.93 12.91 87.09

TO 99.52 72.81 92.85 74.81 73.65 100.95 81.02 2560.55
Including own 109.88 85.76 104.74 91.86 88.65 111.70 93.93 cTCI/TCI
NET 9.88 -14.24 4.74 -8.14 -11.35 11.70 -6.07 85.35/82.60
PNT 24.00 7.00 19.00 8.00 7.00 24.00 13.00

Source: Authors’ calculations.
Note: Any given column 𝑗 reports:
(1) PDCs, which measure the influence of variable 𝑗 listed in the column to variables 𝑖 listed in the row;
(2) TO, the sum of 𝑗’s PDC measures;
(3) NET, 𝑗’s net influence over all varaibles;
(4) PNT, the number of variables which 𝑗 dominates.
All measures in percent except NPT.
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B. LSTM multiplier connnectedness

The estimated LSTMM daily time series exhibit high volatility reflecting the daily log-returns series
volatility. To aid in identifying patterns, the results discussed in this section correspond to the 120-day
moving average of the daily LSTMMs. The calculation of the LSTMMs of the source variable assume
a shock equal to one percent of the standard deviation of its forecast error. Consequently, the LSTMM
values corresponding to the target variable are also reported in percent of the standard deviation of its
forecast error. Hereafter, any reference to standard deviation refers to that of the forecast error, or when
returns are discussed, the discussion refers to the standardized price return.

Table 6 presents a concise summary of the main results. It reports the time average summary statistics,
calculated over the data sample period, of the daily cross-section of the minimum, the maximum, and
the mean values of cryptocurrencies LSTMMs on GSIBs (panels A and B), and the GSIBs LSTMMs
on the cryptocurrencies and other GSIBs (panels C, D, and E respectively); as well as the LSTMMs
between cryptocurrencies (panel F). Tables 7 to 9 present similar summary statistics but disaggregated
by cryptocurrencies and GSIBs.

Table 6. LSTM Multipliers: Summary Statistics, Full Sample

Sample statistics, time average
Cross-section Standard
statistics, daily Mean Minimum Maximum deviation

A: Bitcoin to GSIBs
Minimum 0.14 0.11 0.15 0.01
Mean 0.28 0.20 0.37 0.04
Maximum 0.42 0.26 0.60 0.07

B: Ethereum to GSIBs
Minimum 0.05 0.04 0.09 0.01
Mean 0.14 0.10 0.21 0.02
Maximum 0.23 0.18 0.33 0.03

C: Single GSIB to Bitcoin
Minimum 0.03 0.02 0.05 0.01
Mean 0.10 0.09 0.13 0.01
Maximum 0.33 0.27 0.39 0.03

D: Single GSIB to Ethereum
Minimum 0.05 0.03 0.10 0.02
Mean 0.17 0.14 0.21 0.01
Maximum 0.53 0.42 0.66 0.04

E: Single GSIB to other GSIBs
Minimum 0.02 0.01 0.03 0.00
Mean 0.10 0.08 0.14 0.01
Maximum 0.36 0.24 0.54 0.06

F: Between cryptocurrencies
Bitcoin to Ethereum 0.54 0.40 0.67 0.06
Ethereum to Bitcoin 0.19 0.15 0.26 0.02

Source: Authors’ calculations.
Note: LSTMM values expressed in percent of the standard deviation of the target varia-
ble forecast error when the source variable experiences a positive one percent standard
deviation shock. Columns 2 to 5 in Panels A to E report the full sample summary statis-
tics of the daily cross-section GSIBs’ statistics. Calculations based on a 120-day moving
average.
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Table 7. LSTM Multiplier TO GSIBs : Summary Statistics, Full Sample

Sample statistics, time average

Standard
Source of shock Mean Minimum Maximum deviation

BTC 0.28 0.11 0.60 0.08
ETH 0.14 0.04 0.33 0.05

JPM US 0.12 0.02 0.26 0.06
BAC US 0.06 0.02 0.14 0.02
C US 0.11 0.02 0.28 0.05
HSBA LN 0.08 0.01 0.22 0.03
WFC US 0.09 0.01 0.17 0.03

3988 HK 0.15 0.03 0.31 0.06
BARC LN 0.10 0.02 0.28 0.06
BNP FP 0.19 0.06 0.39 0.05
DBK GR 0.06 0.01 0.11 0.02
GS US 0.11 0.03 0.30 0.05

601398 CH 0.09 0.02 0.21 0.04
8306 JP 0.10 0.02 0.21 0.04
1288 HK 0.05 0.02 0.12 0.02
BK US 0.14 0.04 0.36 0.05
939 HK 0.09 0.02 0.22 0.04

CSGN SW 0.08 0.02 0.20 0.03
ACA FP 0.22 0.06 0.54 0.08
INGA NA 0.10 0.03 0.26 0.04
8411 JP 0.11 0.02 0.32 0.06
MS US 0.05 0.01 0.14 0.02

RY CN 0.08 0.01 0.19 0.03
SAN SM 0.12 0.02 0.26 0.04
GLE FP 0.13 0.05 0.24 0.03
STAN LN 0.07 0.01 0.22 0.03
STT US 0.13 0.03 0.29 0.06

8316 JP 0.08 0.03 0.21 0.03
TD CN 0.13 0.04 0.26 0.04
UBS US 0.08 0.03 0.27 0.03
UCG IM 0.08 0.02 0.21 0.03

Source: Authors’ calculations.
Note: LSTMM values expressed in percent of the standard
deviation of the target variables forecast error when the source
variable experiences a positive one percent standard deviation
shock. Calculations based on a 120-day moving average.
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Table 8. LSTM Multiplier to Bitcoin: Summary Statistics, Full Sample

Sample statistics, time average

Standard
Source of shock: Mean Minimum Maximum deviation

ETH 0.19 0.15 0.26 0.02

JPM US 0.05 0.03 0.09 0.01
BAC US 0.12 0.10 0.14 0.01
C US 0.10 0.07 0.13 0.01
HSBA LN 0.13 0.11 0.14 0.01
WFC US 0.09 0.07 0.12 0.01

3988 HK 0.06 0.03 0.11 0.01
BARC LN 0.05 0.03 0.08 0.01
BNP FP 0.23 0.20 0.27 0.01
DBK GR 0.06 0.05 0.09 0.01
GS US 0.12 0.10 0.14 0.01

601398 CH 0.04 0.02 0.06 0.01
8306 JP 0.06 0.05 0.09 0.01
1288 HK 0.09 0.06 0.15 0.02
BK US 0.15 0.11 0.21 0.02
939 HK 0.13 0.10 0.16 0.01

CSGN SW 0.04 0.02 0.08 0.01
ACA FP 0.33 0.27 0.39 0.03
INGA NA 0.06 0.03 0.08 0.01
8411 JP 0.06 0.04 0.11 0.01
MS US 0.03 0.02 0.05 0.01

RY CN 0.09 0.05 0.12 0.01
SAN SM 0.04 0.02 0.07 0.01
GLE FP 0.28 0.27 0.30 0.01
STAN LN 0.04 0.02 0.07 0.01
STT US 0.21 0.18 0.24 0.01

8316 JP 0.16 0.14 0.17 0.01
TD CN 0.11 0.08 0.14 0.01
UBS US 0.04 0.02 0.07 0.01
UCG IM 0.06 0.04 0.11 0.01

Source: Authors’ calculations.
Note: LSTMM values expressed in percent of the standard
deviation of the target variables forecast error when the source
variable experiences a positive one percent standard deviation
shock. Calculations based on a 120-day moving average.
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Table 9. LSTM Multiplier to Ethereum: Summary Statistics, Full Sample

Sample statistics, time average

Standard
Source of shock: Mean Minimum Maximum deviation

BTC 0.54 0.40 0.67 0.06

JPM US 0.13 0.08 0.19 0.02
BAC US 0.23 0.19 0.26 0.01
C US 0.10 0.05 0.17 0.02
HSBA LN 0.18 0.15 0.21 0.01
WFC US 0.13 0.10 0.18 0.02

3988 HK 0.25 0.17 0.36 0.03
BARC LN 0.09 0.06 0.14 0.02
BNP FP 0.26 0.19 0.34 0.03
DBK GR 0.12 0.09 0.16 0.01
GS US 0.23 0.18 0.27 0.02

601398 CH 0.08 0.05 0.13 0.02
8306 JP 0.06 0.04 0.11 0.01
1288 HK 0.14 0.10 0.20 0.02
BK US 0.25 0.18 0.34 0.03
939 HK 0.14 0.11 0.19 0.02

CSGN SW 0.12 0.09 0.15 0.01
ACA FP 0.53 0.42 0.66 0.04
INGA NA 0.11 0.05 0.18 0.03
8411 JP 0.10 0.05 0.21 0.03
MS US 0.06 0.03 0.11 0.02

RY CN 0.14 0.10 0.18 0.02
SAN SM 0.08 0.05 0.12 0.02
GLE FP 0.37 0.33 0.41 0.02
STAN LN 0.07 0.03 0.16 0.03
STT US 0.30 0.27 0.33 0.01

8316 JP 0.22 0.18 0.26 0.02
TD CN 0.21 0.15 0.27 0.03
UBS US 0.06 0.03 0.11 0.02
UCG IM 0.10 0.05 0.20 0.03

Source: Authors’ calculations.
Note: LSTMM values expressed in percent of the standard
deviation of the target variables forecast error when the source
variable experiences a positive one percent standard deviation
shock. Calculations based on a 120-day moving average.
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The sample statistitcs show that, in terms of equity price returns, cryptocurrencies and GSIBs have
been only weakly connected on average (Table 6, panels A and B). This finding is consistent with the
TVP-VAR variance decomposition connectedness measures. During the 2015-2023 period, a one percent
standardized shock to Bitcoin caused, on average, a movement of one third of a percent in the GSIBs’
price return as measured by the LSTMM. The mean values of the Bitcoin LSTMMs on GSIBs fluctuated
in the [0.20, 0.37] percent range. Bitcoin shocks appeared to influence GSIBs more than Ethereum shocks.
The mean LSTMMs values of the latter on GSIBs were about half of those of Bitcoin, fluctuating in the
[0.10, 0.21] percent range. The maximum impact Bitcoin and Ethereum had on a single GSIB in this
period were 0.60 percent and 0.33 percent respectively. Hence, while on average the LSTMM values have
been small, it is not possible to ignore that from time to time, cryptocurrencies shocks could induce large
GSIB equity price movements.

Similarly, shocks from GSIBs to cryptocurrencies and to other GSIBs have had only a minor impact
on the targets, as evidenced by the low LSTMM values (Table 6, panels C, D and E). Following a
one percent shock to a GSIB, Bitcoin and Ethereum would experience, on average, movements of 0.10
and 0.17 percent, with the largest movements at 0.39 percent and 0.66 percent respectively. Between
GSIBs, the same shock would induce an average price return of 0.10 percent, with the maximum impact
between two GSIBs equal to 0.54 percent. As it was the case, the maximum impact (or LSTMM value)
corresponds to LSTMMs between GSIBs headquartered in the same geographic region.

The disaggregated results presented in Tables 7 to 9 further support the argument that there has been
weak connectedness at the equity price return level between GSIBs and cryptocurrencies, a finding that
mirrors those obtained at the variance decomposition level. Between GSIBs, banks headquartered in
the France, and to a lesser extent in the United States, appear to be the major sources of shocks in the
GSIB sector. Shocks from cryptocurrencies to GSIBs had somewhat a larger impact than those between
GSIBs, but on aggregate, GSIBs have been more affected by shocks from other GSIBs (Table 7). Bitcoin
has experienced larger price returns movements in response to shocks to certain banks headquartered in
France and the US than to Ethereum. The opposite holds for Ethereum, which is mainly affected by
Bitcoin shocks (Tables 8 and 9).

The LSTMM histograms (Figures 8 to 12) reveal common patterns which can be associated with the
transmission of shocks (or connectedness) between GSIBs and cryptocurrencies. The distributions are
right skewed, with a majority of the observations falling below the mean value. Hence, following the
realization of a shock to either a GSIB or a cryptocurrency, most GSIBs are only minimally affected –
recall that the mean LSTMM value is small. The long right tail, however, indicates that a few of the
GSIBs could either be a source of large spillovers (relative to the spillovers’ mean value) to other GSIBs
or cryptocurrencies, or a target of them.

These results might imply that there are two main systemic risk channels in the GSIB sector. One
channel is associated with the transmission and amplification of idiosyncratic shocks affecting individual
firms. In this case, the presence of right tails hints that an idiosyncratic shock might have a large impact
on other firm and could potentially trigger a cascade of failures (Elliott, Golub and Jackson, 2004).
Spillovers from cryptocurrencies could play a role in this transmission channel. The other channel is
associated with a Too-Many-to-Fail event: systemic risk could arise from the simultaneous occurrence of
idiosyncratic shocks that, when accumulated, might lead to large equity price declines. Cryptocurrencies
could play a systemic role since they could transmit shocks to several GSIBs at the same time. Risks,
for the time being, are minimal due to weak connectedness.
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Figure 8. LSTM Multiplier Histograms: Bitcoin to GSIBs (Count)
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Sources: Bloomberg Finance L.P., CoinGecko, and authors’ calculations.
Note: a dotted line corresponds to the mean of the distribution.

Figure 9. LSTM Multiplier Histograms: Ethereum to GSIBs (Count)
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Sources: Bloomberg Finance L.P., CoinGecko, and authors’ calculations.
Note: a dotted line corresponds to the mean of the distribution.

Figure 10. LSTM Multiplier Histograms: GSIBs to Bitcoin (Count)
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Note: a dotted line corresponds to the mean of the distribution.
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Figure 11. LSTM Multiplier Histograms: GSIBs to Ethereum (Count)
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Sources: Bloomberg Finance L.P., CoinGecko, and authors’ calculations.
Note: a dotted line corresponds to the mean of the distribution.

Figure 12. LSTM Multiplier Histograms: GSIBs to GSIBs (Count)
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Note: a dotted line corresponds to the mean of the distribution.

Figure 13. LSTM Multiplier Histograms: Cryptocurrency to Cryptocurrency (Count)
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Figures 14 to 18 show the time evolution of the mean, maximum, and minimum values of the cross-section
of LSTMMs corresponding to shocks originating from the cryptocurrencies and the GSIBs. The Bitcoin and
Ethereum LSTMMs exhibit similar dynamics with connectedness rising rapidly during periods of heightened
volatility. Examples of such periors are the heightened risk in equity and commodity markets in 2015, the drastic
price correction cryptocurrencies amid concerns about a regulatory crackdown in 2018; the start of the COVID
pandemic in 2020; the Crypto Winter and the Russia-Ukraine war in 2022, and doubts about the ability of the
US Federal Reserve to engineer a soft landing in 2023. The LSTMMs from GSIBs to Bitcoin and Ethereum also
exhibit the same dynamics albeit with less pronounced peaks and thorughs. It is worth noting that the LSTMMs
response to economic and market uncertainty is very similar to that of the TVP-VAR connectedness measures.

The results corresponding to the LSTM multipliers between cryptocurrencies suggest that, recently, markets might
view Bitcoin as a safe asset and Ethereum as a speculative one, at least in the crypto space. Figure 19 shows
both assets started to decouple in the aftermath of the Crypto Winter in 2022. Until 2021, the LSTMM from
one currency to the other had a positive correlation of 0.32, with a 95 percent confidence interval of [0.27, 0.36].
From 2022 onwards, the correlation was statistically significant at 0.03 with a 95 percent confidence interval
of [-0.06, 0.12]. The analysis conforms partly to the findings of Nakagawa and Sakemoto (2022) who showed
that the correlation or connectedness between cryptocurrencies is stronger in calm periods. In periods of high
uncertainty, the correlation weakens as investors might reduce the weight of the most speculative cryptocurrency
while keeping their positions in what they consider a safe cryptocurrency.

Figure 14. LSTM Multiplier: Bitcoin to GSIBs (Percent of standard deviation)
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Figure 15. LSTM Multiplier: Ethereum to GSIBs (Percent of standard deviation)
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Figure 16. LSTM Multiplier: GSIBs to Bitcoin (Percent of standard deviation)
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Figure 17. LSTM Multiplier: GSIBs to Ethereum (Percent of standard deviation)
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Figure 18. LSTM Multiplier: GSIBs to GSIBs (Percent of standard deviation)
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Figure 19. LSTM Multiplier: Cryptocurrency to Cryptocurrency (Percent of standard deviation)
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VI. Conclusions
The rise of cryptocurrencies and their integration into the traditional banking and financial system has raised
concerns about the stability of the global financial system (FSB 2022). These concerns are compounded by the
regulatory challenges in keeping up with the rapid developments in the crypto space. The “Crypto Winter”
experienced between 2022 and 2023 served as a stark reminder of the system’s vulnerability to liquidity risks and
runs, mirroring similar vulnerabilities in the traditional financial sector.

Our findings reveal a weak connection between the crypto space and the banking system, either when connect-
edness is measured in terms of forecast variance decompositions (TVP-VAR connectedness) or in terms of price
returns (LSTM multipliers). In the case of TVP-VAR connectedness, shocks originating from banks, both to
other banks, and as a sector to cryptocurrencies, exceed the connectedness due to shocks originating from cryp-
tocurrencies. The cryptocurrencies primarily impact one another. In the case of LSTMM connectedness, the
impact of the shocks are similar regardless of the source of the shock. We also found that connectedness, either
calculated using the TVP-VAR or the LSTMM, tends to rise rapidly during periods of high economic and/or
market uncertainty.

Risks are limited since connectedness has been weak but historical patterns cannot reliably predict future out-
comes. Evolving market practices, such as the proposed introduction of crypto-asset related ETFs by major asset
managers, could lead to stronger linkages between the crypto space and the traditional financial system. Know-
ing that the shock impact is greater during stress periods requires monitoring of market conditions carefully and
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further deepening our understanding of what factors drive financial connectedness. Moreover, the limited connec-
tions between crypto ecosystems and traditional finance, complemented by the cautious approach of traditional
investors and financial institutions in the aftermath of the Crypto Winter, provide an opportunity to enhance
the regulatory and supervisory framework governing crypto system and enhance authorities’ ability to mitigate
potential risks. For instance, the Basel Committee on Banking Supervision has issued the final standards, to be
implemented by January 1, 2025, that limit banks’ holdings of crypto assets (BCBS 2022).

Specifically, the disparity in regulatory treatment between banks and crypto exchanges, along with significant
data gaps, underscores the need for a proactive, comprehensive, and forward-looking approach to regulate and
oversee cryptocurrency markets. This approach should strive for a more equitable playing field in terms of
financial services offered by established financial institutions and intermediaries within the emerging crypto
shadow financial system. Introducing more robust regulatory and supervisory oversight for the latter is crucial
in achieving this objective (IMF 2023).
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